Абсолютна величина дiсного числа
Категория реферата: Топики по английскому языку
Теги реферата: компьютерные рефераты, курсовые
Добавил(а) на сайт: Митин.
Предыдущая страница реферата | 1 2 3 4 5 | Следующая страница реферата
Означення . Елементарною функцiєю називається функцiя, котра може бути задана формулою виду у=f(х), де праворуч стоїть вираз із основних елементарних функцій і сталих за допомогою кінцевого числа операцій додавання , віднімання, множення, ділення і взяття функції від функції.
Елементарні функції-це функції задані аналітично.
Алгебраїчні функції.
1.Ціла раціональна функція або многочлен у=а0хn+a1xn-1+…+an, a0,a1,…,an-сталі числа, котрі називаються кофіцієнтами, n-ціле невід’ємне число.
2.Дробно-раціональна функція
у=(a0xn+a1xn-1+a2xn-1+…+an)/(b0xm+b1xm-1+…+bm)
3.Ірраціональна функція
Якщо в правій частині формули у=f(x) проводяться операції додовання, віднімання, ділення і возведення в степень з раціональними нецілими показниками, то функція у від х називається ірраціональною.
Перетворення графіків.
Нехай маємо графік функції у=f(х).
у= - f(х)-симетричний відносно осі Ох.
у= ôf(х)ô-приймає тільки додатні значення.
Приклад
Графіки можуть складатись і відніматись
у=х+(1/х)
Множення і розтягнення від осі обсцис.
Щоб побудувати графік функції у=Мf(х),М>0,треба перейти до нових одиниць масштабу.Одиницю масштабу на осі Ох залишило незмінною, а за одиницю масштабу по осі Оу візьмемо добуток М на стару одиницю і побудуємо графік функції у=f(х) в нових одиницях масштабу
у=f(х+с), у=f(kx)
Графік функції х+с Î Х отримуємо і графіка функції у=f(х) непосреднім переміщенням його переменною осі с Ох на êсê одиниць масштабу вліво, якщо C>0 (і вправо, якщо С<0)
Графік функції у=f(kx),k>0,(kx) Î x отримуємо із графіка у=f(х) непосреднім розтягненням його в 1/k разів по напрямку осі Ох.
Перенесення графіка паралельно осі ординат g(x)=f(x)+a
Приклади: у=êх÷+2х
у= -3cos(2 x+(п/6))
у=х+sinx
7) Графічне рішення
Рекомендуем скачать другие рефераты по теме: личные сообщения, конспект речь, шпаргалки по истории.
Предыдущая страница реферата | 1 2 3 4 5 | Следующая страница реферата