Абстрактная теория групп
Категория реферата: Рефераты по математике
Теги реферата: доклад на тему животные, сочинения по литературе
Добавил(а) на сайт: Rudov.
Предыдущая страница реферата | 1 2 3 4 5 6 | Следующая страница реферата
Для групп преобразований новое и старое понятие подгруппы равносильны между собой. - подгруппа четных подстановок. и т.д. Пусть G - любая группа и - любой фиксированный элемент. Рассмотрим множество всевозможных степеней этого элемента. Поскольку , рассматриваемое множество является подгруппой. Она называется циклической подгруппой с образующим элементом g . Пусть любая подгруппа Рассмотрим множество - централизатор подгруппы H в группе G. Из определения вытекает, что если , то , то есть . Теперь ясно, что если , то и и значит централизатор является подгруппой. Если группа G коммутативна, то . Если G=H, то централизатор состоит из тех элементов, которые перестановочны со всеми элементами группы; в этом случае он называется центром группы G и обозначается Z(G).
Замечание об аддитивной форме записи группы.
Иногда, особенно когда операция в группе коммутативна, она обозначается (+) и называется сложением. В этом случае нейтральный элемент называется нулем и удовлетворяет условию: g+0=g. Обратный элемент в этом случае называется противоположным и обозначается (-g). Степени элемента g имеют вид g+g+...+g , называются кратными элемента g и обозначаются ng.
6. Реализация абстрактной группы как группы преобразований.Существует несколько способов связать с данной абстрактной группой некоторую группу преобразований. В дальнейшем, если не оговорено противное, знак алгебраической операции в абстрактной группе будет опускаться.
Пусть некоторая подгруппа.
А) Для каждого определим отображение (левый сдвиг на элемент h) формулой .
Теорема 1
Множество L(H,G)= является группой преобразований множества G. Соответствие: является изоморфизмом групп H и L(H,G).Доказательство.
Надо проверить, что отображение взаимно однозначно для всякого . Если , то по закону сокращения. Значит инъективно. Если любой элемент, то и так что к тому же и сюръективно. Обозначим через · операцию композиции в группе Sym(G) взаимно однозначных отображений . Надо проверить, что и . Пусть любой элемент. Имеем: ; и значит, . Пусть . Надо проверить, что l взаимно однозначно и сохраняет операцию. По построению l сюръективно. Инъективность вытекает из закона правого сокращения: . Сохранение операции фактически уже было установлено выше: .Следствие.
Любая абстрактная группа изоморфна группе преобразований некоторого множества (Достаточно взять G=H и рассмотреть левые сдвиги).
Для случая конечных групп получается теорема Кэли:
Любая группа из n элементов изоморфна подгруппе группы подстановок степени n.
Для каждого определим отображение (правый сдвиг на элемент h) формулой .Теорема B.
. Множество является группой преобразований множества G. Соответствие является изоморфизмом групп H и R(H,G).Доказательство теоремы B вполне аналогично доказательству теоремы A. Отметим только, что . Именно поэтому в пункте 3 теоремы В появляется не , а .
С) Для каждого определим (сопряжение или трансформация элементом h ) формулой .
Теорема С.
Каждое отображение является изоморфизмом группы G с собой (автоморфизмом группы G). Множество является группой преобразований множества G. Отображение сюръективно и сохраняет операцию.Доказательство.
Поскольку , отображение взаимно однозначно как композиция двух отображений такого типа. Имеем: и потому сохраняет операцию. Надо проверить, что и . Оба равенства проверяются без труда. Сюръективность отображения имеет место по определению. Сохранение операции уже было проверено в пункте 2.Замечание об инъективности отображения q .
В общем случае отображение q не является инъективным. Например, если группа H коммутативна, все преобразования будут тождественными и группа тривиальна. Равенство означает, что или (1) В связи с этим удобно ввести следующее определение: множество называется централизатором подгруппы . Легко проверить, что централизатор является подгруппой H. Равенство (1) означает, что . Отсюда вытекает, что если централизатор подгруппы H в G тривиален, отображение q является изоморфизмом.
7. Смежные классы; классы сопряженных элементов.Пусть, как и выше, некоторая подгруппа. Реализуем H как группу L(H,G) левых сдвигов на группе G. Орбита называется левым смежным классом группы G по подгруппе H. Аналогично, рассматривая правые сдвиги, приходим к правым смежным классам .Заметим, что стабилизатор St(g, L(H,G)) (как и St(g, R(H,G)) ) тривиален поскольку состоит из таких элементов , что hg=g. Поэтому, если группа H конечна, то все левые и все правые смежные классы состоят из одинакового числа элементов, равного .
Орбиты группы называются классами сопряженных элементов группы G относительно подгруппы H и обозначаются Если G=H, говорят просто о классах сопряженных элементов группы G. Классы сопряженных элементов могут состоять из разного числа элементов . Это число равно , где Z(H,g) подгруппа H , состоящая из всех элементов h перестановочных с g.
Пример.
Пусть - группа подстановок степени 3. Занумеруем ее элементы: =(1,2,3); =(1,3,2); =(2,1,3); =(2,3,1); =(3,1,2); =(3,2,1). Пусть . Легко проверить, что левые смежные классы суть:
, , .
Правые смежные классы:
, , .
Рекомендуем скачать другие рефераты по теме: банк курсовых, шпори политология.
Предыдущая страница реферата | 1 2 3 4 5 6 | Следующая страница реферата