Абстрактная теория групп
Категория реферата: Рефераты по математике
Теги реферата: доклад на тему животные, сочинения по литературе
Добавил(а) на сайт: Rudov.
Предыдущая страница реферата | 1 2 3 4 5 6 | Следующая страница реферата
Определение.
Отображение групп называется гомоморфизмом, если оно сохраняет алгебраическую операцию, то есть : .
Таким образом, обобщение состоит в том, что вместо взаимно однозначных отображений, которые участвуют в определении изоморфизма, здесь допускаются любые отображения.
Примеры.
Разумеется, всякий изоморфизм является гомоморфизмом. Тривиальное отображение является гомоморфизмом. Если - любая подгруппа, то отображение вложения будет инъективным гомоморфизмом. Пусть - нормальная подгруппа. Отображение группы G на факторгруппу G/H будет гомоморфизмом поскольку . Этот сюръективный гомоморфизм называется естественным. По теореме С предыдущего раздела отображение сопряжения сохраняет операцию и, следовательно является гомоморфизмом. Отображение , которое каждому перемещению n- мерного пространства ставит в соответствие ортогональный оператор (см. лекцию №3) является гомоморфизмом поскольку по теореме 4 той же лекции .Теорема (свойства гомоморфизма)
Пусть - гомоморфизм групп, и - подгруппы. Тогда:
, . - подгруппа. -подгруппа, причем нормальная, если таковой была .Доказательство.
и по признаку нейтрального элемента . Теперь имеем: . Пусть p = a (h) , q = a (k) . Тогда и . По признаку подгруппы получаем 2. Пусть то есть элементы p = a (h) , q = a (k) входят в . Тогда то есть . Пусть теперь подгруппа нормальна и - любой элемент. и потому .Определение.
Нормальная подгруппа называется ядром гомоморфизма .Образ этого гомоморфизма обозначается .
Теорема.
Гомоморфизм a инъективен тогда и только тогда, когда
Доказательство.
Поскольку , указанное условие необходимо. С другой стороны, если , то и если ядро тривиально, и отображение инъективно.
Понятие гомоморфизма тесно связано с понятием факторгруппы.
Теорема о гомоморфизме.
Любой гомоморфизм можно представить как композицию естественного (сюръективного) гомоморфизма , изоморфизма и (инъективного) гомоморфизма (вложения подгруппы в группу): .
Доказательство.
Гомоморфизмы p и i описаны выше (см. примеры) Построим изоморфизм j . Пусть . Элементами факторгруппы являются смежные классы Hg . Все элементы имеют одинаковые образы при отображении a : . Поэтому формула определяет однозначное отображение . Проверим сохранение операции .Поскольку отображение j очевидно сюръективно, остается проверить его инъективность. Если , то и потому . Следовательно, и по предыдущей теореме j инъективно.
Пусть - любой элемент. Имеем : . Следовательно, .
10 Циклические группы.Пусть G произвольная группа и - любой ее элемент. Если некоторая подгруппа содержит g , то она содержит и все степени . С другой стороны, множество очевидно является подгруппой G .
Определение.
Подгруппа Z(g) называется циклической подгруппой G с образующим элементом g. Если G = Z(g) , то и вся группа G называется циклической.
Таким образом, циклическая подгруппа с образующим элементом g является наименьшей подгруппой G, содержащей элемент g.
Примеры
Группа Z целых чисел с операцией сложения является циклической группой с образующим элементом 1. Группа поворотов плоскости на углы кратные 2 p ¤ n является циклической с образующим элементом - поворотом на угол 2 p ¤ n. Здесь n = 1, 2, ...Теорема о структуре циклических групп.
Рекомендуем скачать другие рефераты по теме: банк курсовых, шпори политология.
Предыдущая страница реферата | 1 2 3 4 5 6 | Следующая страница реферата