Алгебраические расширения полей
Категория реферата: Рефераты по математике
Теги реферата: реферат мировые войны, культурология
Добавил(а) на сайт: Меркурия.
Предыдущая страница реферата | 1 2 3 4 5 6 7 8 9 10 11 | Следующая страница реферата
Для отыскания j и y применим алгоритм Евклида к многочленам p и g:
-x3-2 -x2+x+1 -x2+x+1 2x-1
x3-x2-x -x-1 -x2+1/2x -1/2x+1/4
x2+x-2 1/2x+1
x2-x-1 1/2x-1/4
2x-1 5/4
Таким образом,
p=g(-x-1)+(2x-1),
g=(2x-1)(-1/2x+1/4)+5/4.
Откуда находим
(2x-1)=p+g(x+1),
5/4=g-(p+g(x+1))(-1/2x+1/4)
или
p1/5(2x-1)+g(4/5+1/5(2x2+x-1))=1,
p1/5(2x-1)+g(2/5x2+1/5x+3/5)=1.
Таким образом,
y(x)= (2/5x2+1/5x+3/5).
Тогда
y(a)=y()=.
Следовательно
.
2.Составное алгебраическое расширение поля.
2.1. Конечное расширение поля.
Пусть P — подполе поля F. Тогда мы можем рассматривать F как векторное пространство над P, т. е. рассматривать векторное пространство +F, +, {wl½l 0P},,
где wl- операция умножения элементов из F на скаляр l0P.
Определение. Расширение F поля P называется конечным, если F, как векторное пространство над P, имеет конечную размерность. Эта размерность обозначается через [F : P].
Предложение 2.1. Если a — алгебраический элемент степени n над P, то [P (a):P]=n.
Рекомендуем скачать другие рефераты по теме: культурология, сочинение 3.
Предыдущая страница реферата | 1 2 3 4 5 6 7 8 9 10 11 | Следующая страница реферата