* Алгебры и их применение
Категория реферата: Рефераты по математике
Теги реферата: изложение 8 класс, курсовые работы бесплатно
Добавил(а) на сайт: Jandiev.
Предыдущая страница реферата | 7 8 9 10 11 12 13 14 15 16 17 | Следующая страница реферата
Иными словами, линейное пространство L факторизируется по его линейному подмножеству, натянутому на всевозможные векторы, имеющие вид разностей между правыми и левыми частями равенств (3.6.) – (3.9.).
Затем вводится скалярное произведение в L.
(f1 f2 , g1 g2 ) = (f1 g1)(f2 g2) (3.10.)
f1, g1Н1; f2, g2 Н2,
а затем распространяется на другие элементы из факторизованного L билинейным образом.
3.2. Тензорные произведения операторов. Определим тензорное произведение ограниченных операторов.
Теорема 3.1. Пусть , - две последовательности гильбер- товых пространств, - последовательность операторов АкL(Нк, Gк). Определим тензорное произведение А1 …Аn = Ак формулой
() f = () = (3.11.)
(f ).
Утверждается, что ряд в правой части (3.11.) сходится слабо в и определяет оператор L (, ), причем
|| || = || || (3.12.)
Доказательство. Достаточно рассмотреть случай n=2, так как в силу равенства Н1,…, Нn = (Н1,…, Нn-1)Нn общий случай получается по индукции.
Пусть - некоторый ортонормированный базис в Gк (к = 1, 2) и пусть g = G1 G2. В качестве f возьмем вектор из Н1 Н2 с конечным числом отличных от нуля координат fα.
Зафиксируем α2, β1 Z+ и обозначим через f(α2) Н1 вектор f(α2) = и через g(β1)G2 – вектор g(β1) =. Получим
= =
= ≤ =
= ≤ =
=
Из этого неравенства следует слабая сходимость в G1G2 ряда уже при произвольном c Н1Н2 и оценка его нормы в G1G2 сверху через ||A1|| ||A2|| ||f||. Таким образом, оператор A1 A2: Н1 Н2 →G1G2 определен посредством (3.11.) корректно, ограничен и его норма не превосходит ||A1|| ||A2||.
Из (3.5.) и (3.11.) следует
||(A1 A2) (f1 f2)|| = ||A1 f1|| ||A2 f2|| (fк Нк , к = 1, 2)
Подбирая должным образом орты f1, f2 последнее произведение можно сделать сколь угодно близким к ||A1|| ||A2||, поэтому неравенство ||(A1 A2)|| ≤ ||A1|| ||A2|| не может выполняться, то есть (3.12.) при n=2 доказано.
Из (3.11.) получаем для Ак L(Hк, Gк), Вк L(Hк, Gк) (к = 1,…, n) соотношения
(Вк) (Ак) = (Вк Ак) (3.13.)
(Ак)* = Ак* (3.14)
Рекомендуем скачать другие рефераты по теме: решебник 6, евгений сочинение.
Предыдущая страница реферата | 7 8 9 10 11 12 13 14 15 16 17 | Следующая страница реферата