* Алгебры и их применение
Категория реферата: Рефераты по математике
Теги реферата: изложение 8 класс, курсовые работы бесплатно
Добавил(а) на сайт: Jandiev.
Предыдущая страница реферата | 12 13 14 15 16 17 18 19 20 21 22 | Следующая страница реферата
Доказательство. Проверим инвариантность L. Для любых a, b С имеем
Р1 (aх + bР2х) = aх + λbх = (a + λb) х L,
Р2 (aх + bР2х) = aР2х + bР2х = (a + b) Р2 х L
dimL = 2, так как Нi,j = {0} (для всех i, j= 0,1).
Действительно, если aх + bР2х = 0, где, например, а ≠ 0, то х = Р2х, значит = 0 или 1 и х Н1,1; тогда Н1,1≠{0}.
Итак, получаем предложение.
Теорема 1.2. Если dimН = n, n>2, то нет неприводимых *-пред- ставлений *-алгебры P2 . Все неприводимые конечномерные *-представления одномерны и двумерны.
1.5. Спектральная теорема. Пусть dimН = n. В этом пункте мы получим разложение на неприводимые *-подпредставления исходного *-представления π *-алгебры P2, а также разложение пространства Н на инвариантные подпространства относительно π.
Теорема 3.1. (спектральная теорема). Существует единственное разложе- ние Н в ортогональную сумму инвариантных относительно Р1 и Р2 подпространств
Н = Н0,0Н0,1Н1,0Н1,1 ((С2Нк)), (1.1.)
где каждому подпространству Нк соответствует одно φк (0, ), φк ≠ φi при к≠i, dimНк = nк (к = 1,…, m). Пусть Рi,j: Н → Нi,j , Рφк: Н → С2Нк – ортопроекторы к = 1,…, m. Тогда существуют единственные разложения операторов
I = P0,0 P0,1 P1,0 P1,1(Рφк), (1.2.)
P1 = P1,0P1,1((Iк )) (1.3)
Р2 = P0,1 P1,1 (Iк )) (1.4)
где Iк – единичный оператор на Нк (к = 1,…, m).
Доказательство. Пусть dimНi,j = ni,j. Сразу можем записать разложение
Н = Н0,0 Н0,1 Н1,0 Н1,1 Н΄, где dimН΄ четное число. Используя лемму 1.2. и теорему 2.1. главы I можем написать разложение Н΄ в ортого- нальную сумму инвариантных двумерных подпространств, определяемых параметром φк (0, ):
Н΄ = Нφк, (l = n - )
Собирая вместе все Нφк, у которых одно φк, получим изоморфизм
Нφк…Нφк ≈ С2Нк , где Нφк nк экземпляров, dim(Нφк…Нφк )=2nк dim(С2Нк) = dimС2 dimНк = 2nк . Следовательно, получаем разложение (1.1.)
Н = Н0,0 Н0,1 Н1,0 Н1,1 ((С2Нк))
Пусть πi,j – сужение π на Нi,j ( i, j= 0,1), πк – сужение π на Нφк (к = 1,…, m), то есть πi,j и πк - *-подпредставления.
Учитывая кратности подпредставлений получаем
π = n0,0π0,0n0,1π0,1n1,0π1,0n1,1π1,1(nкπк) (1.5.)
В силу теоремы 2.8. главы I разложения (1.1.) и (1.5.) единственные.
Рекомендуем скачать другие рефераты по теме: решебник 6, евгений сочинение.
Предыдущая страница реферата | 12 13 14 15 16 17 18 19 20 21 22 | Следующая страница реферата