Дифференциальные уравнения I и II порядка
Категория реферата: Рефераты по математике
Теги реферата: скачать бесплатный реферат без регистрации, реферат на тему русские
Добавил(а) на сайт: Rafail.
Предыдущая страница реферата | 11 12 13 14 15 16 17 18 19 20 21 | Следующая страница реферата
.
Пример 3. Дано уравнение
(y2-3xy-2x2)dx+(xy-x2)dy=0.
Из M(x,y)=y2-3xy-2x2, N(x,y)=xy-x2, , следует , т.е. уравнение не является в полных дифференциалах.
Однако из соотношения
вытекает, что можно найти такой интегрирующий множитель g=g(x), после умножения на который исходное уравнение становится уравнением в полных дифференциалах.
Указанный множитель находим из уравнения
,
интегрируя которое получаем , или g=xc. Так как в качестве множителя достаточно взять одну из функций, то положим c=1 и, тогда, g=x.
Умножая исходное уравнение на множитель g=x, получаем
(xy2-3x2y-2x3)dx+(x2y-x3)dy=0,
являющееся уже уравнением в полных дифференциалах. Интегрируя его, находим
,
,
затем из U/y=x2y-x3+h/(x) и U/y=N(x,y)=x2y-x3
получаем x2y-x3+h/=x2y-x3, т.е. и,
следовательно, h=c=const. Таким образом, общее решение имеет вид
.
Пример 4. Требуется решить уравнение
(2xy2-y)dx+(y2+x+y)dy=0.
Из M(x,y)=2xy2-y, N(x,y)=y2+x+y, следует
.
Однако из соотношения
,
Рекомендуем скачать другие рефераты по теме: собственность реферат, шпаргалки бесплатно скачать.
Предыдущая страница реферата | 11 12 13 14 15 16 17 18 19 20 21 | Следующая страница реферата