Двойной интеграл в механике и геометрии
Категория реферата: Рефераты по математике
Теги реферата: реферат почему ответы по алгебре
Добавил(а) на сайт: Бугайчук.
Предыдущая страница реферата | 4 5 6 7 8 9 10 11 12 13 14 | Следующая страница реферата
Предел этой суммы, когда наибольший из диаметров площадок - стремится к нулю, мы будем называть площадью поверхности, т. е. по определению положим
(2)
Займемся теперь вычислением площади поверхности. Обозначим через угол между касательной плоскостью и плоскостью Оху.
Рис.20 Рис.21
На основании известной формулы аналитической геометрии можно написать (рис.21)
или
(3)
Угол есть в то же время угол между осью Oz и перпендикуляром к плоскости (1). Поэтому на основании уравнения (1) и формулы аналитической геометрии имеем
Следовательно,
Подставляя это выражение в формулу (2), получим
Так как предел интегральной суммы, стоящей в правой части последнего равенства, по определению представляет собой двойной интеграл то окончательно получаем
(4)
Это и есть формула, по которой вычисляется площадь поверхности
Если уравнение поверхности дано в виде или в виде то соответствующие формулы для вычисления поверхности имеют вид
(3’)
(3’’)
где D’ и D’’ - области на плоскостях Oyz и Oxz, в которые проектируется данная поверхность.
а) Примеры.
Пример 1. Вычислить поверхность сферы
Решение. Вычислим поверхность верхней половины сферы (рис.22). В этом случае
Рекомендуем скачать другие рефераты по теме: доклад по химии, банк рефератов и курсовых.
Предыдущая страница реферата | 4 5 6 7 8 9 10 11 12 13 14 | Следующая страница реферата