Двойной интеграл в механике и геометрии
Категория реферата: Рефераты по математике
Теги реферата: реферат почему ответы по алгебре
Добавил(а) на сайт: Бугайчук.
Предыдущая страница реферата | 3 4 5 6 7 8 9 10 11 12 13 | Следующая страница реферата
Примеры. 1) Найдём двойной интеграл от функции
по прямоугольной области D
Геометрически I выражает объём четырёхугольной призмы
(рис.12), основанием которой служит прямоугольник D, усечённый плоскостью .
Возьмём повторный интеграл сначала по y, затем по x:
То же самое получим, интегрируя сначала по x, а затем по y:
2) Вычислим двойной интеграл
по области D, ограниченной линиями y=x и y=x2. Область D
изображена на рис.13. Интегрируя сначала по y, а потом по x,
получаем
Правильность результата можно проверить, изменив порядок интегрирования :
Вычислим объём тела, ограниченного цилиндрическими поверхностями и плоскостью z=0 (рис.14,а).
Поверхность, ограничивающая тело сверху, имеет уравнение z=4-y2. Область интегрирования D получается в результате пересечения параболы с линией пересечения цилиндра z=4-y2 и плоскости z=0, т.е. с прямой y=2 (Рис. 14, б). Ввиду симметрии тела относительно плоскости Oyz вычисляем половину искомого объёма :
Рекомендуем скачать другие рефераты по теме: доклад по химии, банк рефератов и курсовых.
Предыдущая страница реферата | 3 4 5 6 7 8 9 10 11 12 13 | Следующая страница реферата