Математическая статистика
Категория реферата: Рефераты по математике
Теги реферата: контрольная 2, древний реферат
Добавил(а) на сайт: Кожевин.
Предыдущая страница реферата | 8 9 10 11 12 13 14 15 16 17 18 | Следующая страница реферата
а площадь под кривой на заданном интервале X определяет вероятность попадания в этот интервал.
Чаще всего закон нормального распределения используется для нормированной случайной величины
Z = (X – m ) /s , {2–11} у которой M(Z)=0; D(Z)=1. {2–12}
Отметим ряд других особенностей этого распределения, полагая его нормированным.
· Доказано, что целый ряд “классических” распределений (как дискретных, так и непрерывных) стремятся к нормальному при непрерывном изменении их внутренних параметров.
· Симметрия нормального распределения позволяет достаточно просто оценивать вероятность “попадания” случайной нормированной величины в заданный диапазон. Очень часто в прикладной статистике приходится использовать понятие “маловероятного” значения. Для нормированной величины с нормальным распределением вероятность попадания в диапазон ± 3s составляет 0.9973 (правило “трех сигм”).
· Особую роль играет нормальное распределение при решении вопросов о “представительности” наблюдений. Оказывается, что работа с выборочными распределениями в большинстве случаев позволяет решить проблему оценки наших предварительных выводов, предположений, гипотез – с использованием разработанных и теоретически обоснованных приемов на базе нормального закона.
Распределения выборочных значений параметров нормального распределения
Пусть у нас имеется некоторая непрерывная случайная величина X , распределенная нормально с математическим ожиданием m и среднеквадратичным отклонением s . Если мы имеем n наблюдений над такой величиной (имеем выборку объемом n из генеральной совокупности) , то выборочные значения Mx и Sx являются также случайными величинами и нам крайне важно знать их законы распределения. Это необходимо как для оценки доверия к этим показателям, так и для проверки принадлежности исходного распределения к нормальному. Существует ряд теоретически обоснованных выводов по этой проблеме:
· величина имеет нормированное нормальное распределение, что позволяет оценивать Mx при заранее известной дисперсии;
· величина имеет так называемое распределение Стьюдента, для которого также имеется выражение плотности вероятности и построены таблицы;
· величина имеет распределение "хи–квадрат", также с аналитической функцией плотности и рассчитанными по ней таблицами.
Отметим, что распределения Стьюдента и "хи–квадрат" имеют свой внутренний параметр, который принято называть числом степеней свободы. Этот параметр полностью определяется объемом выборки (численностью наблюдений) и выбирается обычно равным m =(n – 1).
Взаимосвязи случайных величин Парная корреляция
Прямое толкование термина "корреляция" — стохастическая, вероятная, возможная связь между двумя (парная) или несколькими (множественная) случайными величинами.
Рекомендуем скачать другие рефераты по теме: скачать доклад бесплатно, вирусы реферат.
Предыдущая страница реферата | 8 9 10 11 12 13 14 15 16 17 18 | Следующая страница реферата