Математическая статистика
Категория реферата: Рефераты по математике
Теги реферата: контрольная 2, древний реферат
Добавил(а) на сайт: Кожевин.
Предыдущая страница реферата | 13 14 15 16 17 18 19 20 21 22 23 | Следующая страница реферата
Не забудем, что отвергая Њ0, мы принимаем альтернативную Њ1 и наоборот. Пусть у нас уже есть правило, в соответствии с которым мы либо принимаем основную гипотезу Њ0, либо отвергаем её.
Как уже говорилось, контрольной цифрой является уровень значимости – вероятность a наблюдать то, что мы имеем после эксперимента, в случае если гипотеза Њ0 верна.
Пусть, к примеру, мы знаем вероятность данного наблюдения при истинности основной гипотезы и она равна 0.04. Мы вправе принять эту гипотезу – вероятность ошибиться меньше, чем a =0.05.
Конечно, приняв нулевую гипотезу, мы рискуем ошибиться. Степень риска можно найти очень просто – вероятность отбросить верную нулевую гипотезу (совершить ошибку первого рода или a –ошибку) составляет 5 %.
Но ведь можно совершить и другую ошибку – принять нулевую гипотезу, когда она на самом деле неверна (ошибка второго рода или b –ошибка). Величина эта зависит, прежде всего, от решающего правила – критерия принятия гипотез. Поэтому величину (1 –b ) принято называть мощностью критерия.
С определением вероятности ошибки второго рода дело обстоит не так просто – ее приходится вычислять. В первом приближении можно считать, что нам одинаково “вредны” ошибки как первого, так и второго рода. Более актуальным является вопрос – а как их избежать или хотя бы снизить вероятность их появления? К сожалению, в задачи курса не входит рассмотрение таких вопросов.
Достаточно знать, что в прикладной статистике существуют методы повышения эффективности критериев проверки статистических гипотез.
Кроме того, нельзя упускать из виду и "простой рецепт" снижения вероятностей ошибок как первого, так и второго рода – надо иметь побольше наблюдений.
Так, например, имеются достаточно надежные методы определения так называемых “критических” значений СВ. Эти значения для задач рассмотренных выше типов (с биномиальным распределением вероятностей) позволяют сразу же оценить возможность отбрасывания нулевой гипотезы – по данным о числе испытаний и числе наблюдений данного события.
Если число испытаний монетки на симметрию составляет N=12 и выдвинуты гипотезы Њ0: (p=q); Њ1: (p#q), то критическими значениями наблюдений при граничной вероятности a =0.05 являются S=2 и S=10. Это означает, что при наблюдаемом числе гербов £ 2 или ³ 10 нулевая гипотеза может быть отвергнута.
Обратим также внимание на явную зависимость наших решений от числа наблюдений – нам не удалось отвергнуть гипотезу о симметрии монетки при всего одном гербе (из восьми бросаний), но вполне обосновано удается сделать это при 0, 1 и даже 2 – при увеличении числа наблюдении или, на языке статистики, увеличении объема выборки.
Выборочные распределения на шкалах Int и Rel Оценка наблюдений при неизвестном законе распределенияКакова цель наблюдений над случайной величиной; для чего используются результаты наблюдений; где, как и для чего применить возможности теории вероятностей и прикладной статистики? Ответы на эти, простые с виду, вопросы зависят от многих факторов, обстоятельств и не всегда оказываются конкретными.
Попытаемся всё же сформулировать ответ применительно к конкретной обстановке – при статистических расчетах в экономических системах.
В таких системах основные числовые показатели “жизни” системы в целом и отдельных её элементов можно свести к трем разновидностям:
· продукция, с конкретными ее показателями (вес, объем, количество и т.д.), – величинами на шкале Int или Rel;
· деньги, с единицей измерения по шкале Int или Rel (отрицательные величины обычно означают убытки или долги);
· информация, с несколькими шкалами измерений – в битах (байтах) для количественного описания по шкале Int или в виде сообщений о событиях на шкалах Nom или Ord.
Простые размышления приводят к мысли о возможности допустить, что все эти величины являются, во-первых, случайными и, во-вторых, дискретными. Ясно также, что без учета всех этих величин эффективной экономики быть не может – только знание всех этих показателей позволит управлять экономикой.
Конечно, у многих из вас уже готово решение проблемы – раз уж мы не знаем точно значение величины (скажем – суммы прибыли), так воспользуемся её математическим ожиданием! Это верная мысль…
Но для вычисления математического ожидания надо знать закон распределения вероятностей, т.е. иметь информацию
· обо всех допустимых (возможных) значениях прибыли;
Рекомендуем скачать другие рефераты по теме: скачать доклад бесплатно, вирусы реферат.
Предыдущая страница реферата | 13 14 15 16 17 18 19 20 21 22 23 | Следующая страница реферата