Математическая статистика
Категория реферата: Рефераты по математике
Теги реферата: контрольная 2, древний реферат
Добавил(а) на сайт: Кожевин.
Предыдущая страница реферата | 5 6 7 8 9 10 11 12 13 14 15 | Следующая страница реферата
Рис. 2–2
Простое рассмотрение табл.2–2 или соответствующих гистограмм рис.2–2 приводит к выводу о равенстве M(X) = M(Y) = 0.5 , но вместе с тем столь же очевидно, что величина X является заметно “менее случайной”, чем Y.
Приходится признать, что математическое ожидание является удобным, легко вычислимым, но весьма неполным способом описания закона распределения. И поэтому требуется еще как–то использовать полную информацию о случайной величине, свернуть эту информацию каким–то иным способом.
Обратим внимание, что большие отклонения от M(X) у величины X маловероятны, а у величины Y – наоборот. Но при вычислении математического ожидания мы, по сути дела “усредняем” именно отклонения от среднего, с учетом их знаков. Стоит только “погасить” компенсацию отклонений разных знаков и сразу же первая СВ действительно будет иметь показатель разброса данных меньше, чем у второй. Именно такую компенсацию мы получим, усредняя не сами отклонения от среднего, а квадраты этих отклонений.
Соответствующую величину
D(X) = S (X i – M(X))2 · P(X i); {2–4} принято называть дисперсией распределения дискретной СВ.
Ясно, что для величин, имеющих единицу измерения, размерность математического ожидания и дисперсии оказываются разными. Поэтому намного удобнее оценивать отклонения СВ от центра распределения не дисперсией, а квадратным корнем из нее – так называемым среднеквадратичным отклонением s , т.е. полагать
s 2 = D(X). {2–5}
Теперь оба параметра распределения (его центр и мера разброса) имеют одну размерность, что весьма удобно для анализа.
Отметим также, что формулу {2–3} часто заменяют более удобной
D(X) = S (X i)2 · P(X i) – M(X)2. {2–6}
Весьма полезно будет рассмотреть вопрос о предельных значениях дисперсии.
Подобный вопрос был бы неуместен по отношению к математическому ожиданию – мало ли какие значения может иметь дискретная СВ, да еще и со шкалой Int или Rel.
Но дословный перевод с латыни слова “дисперсия” означает “рассеяние”, “разброс” и поэтому можно попытаться выяснить – чему равна дисперсия наиболее или наименее “разбросанной” СВ? Скорее всего, наибольший разброс значений (относительно среднего) будет иметь дискретная случайная величина X, у которой все n допустимых значений имеют одну и ту же вероятность 1/n. Примем для удобства Xmin и Xmax (пределы изменения данной величины), равными 1 и n соответственно.
Математическое ожидание такой, равномерно распределенной случайной величины составит M(X) = (n+1)/2 и остается вычислить дисперсию, которая оказывается равной D(X) = S (Xi)2/n – (n+1)2/4 = (n2–1)/ 12.
Можно доказать, что это наибольшее значение дисперсии для дискретной СВ со шкалой Int или Rel .
Последнее выражение позволяет легко убедиться, что при n =1 дисперсия оказывается равной нулю – ничего удивительного: в этом случае мы имеем дело с детерминированной, неслучайной величиной.
Дисперсия, как и среднеквадратичное отклонение для конкретного закона распределения являются просто числами, в полном смысле показателями этого закона.
Полезно познакомиться с соотношениями математических ожиданий и дисперсий для упомянутых ранее стандартных распределений:
Таблица 2–3
Тип распределения |
Математическое ожидание |
Дисперсия |
Коэффициент вариации |
|
Предыдущая страница реферата | 5 6 7 8 9 10 11 12 13 14 15 | Следующая страница реферата Поделитесь этой записью или добавьте в закладкиКатегории: |