Метод изображений в электростатике
Категория реферата: Рефераты по математике
Теги реферата: пожары реферат, реферат
Добавил(а) на сайт: Platon.
1 2 3 4 5 6 7 8 9 10 11 | Следующая страница реферата
Метод изображений в электростатике
О. В. Инишева
Bведение
Задачи о нахождении электрического поля системы нескольких точечных зарядов или системы зарядов, равномерно распределенным по каким-либо поверхностям, решаются в электростатике без особых сложностей. В самой худшей ситуации от Вас потребуется знание формулы Гаусса и, может быть, умение интегрировать. Решение этих задач существенно облегчено тем, что мы заранее знаем величины зарядов и то, как они распределены в пространстве.
Гораздо хуже дело обстоит в том случае, если мы имеем систему заданных точечных зарядов и каких-либо проводящих или диэлектрических поверхностей, расположенных вблизи них. Предположим, что мы хотим найти электрическое поле в такой задаче. Система зарядов вызовет перераспределение зарядов на поверхностях, в результате мы получим индуцированные заряды на поверхностях. Очевидно, что индуцированные заряды будут распределены по поверхностям неравномерно, особенно большая плотность заряда будет в тех точках поверхностей, которые расположены ближе всего к зарядам. Но как именно заряды распределены по поверхностям? Подобные задачи, как правило, не могут быть решены без использования численных методов, и такие расчеты проводят обычно на компьютерах.
Но есть достаточно большое количество частных случаев, в которых можно обойтись без использования вычислительной техники. Одним из методов решения таких задач является метод изображений, который заключается в сведении исходной задачи, в которой рассматриваются заряды и граничные поверхности, к задаче, в которой есть те же заряды и добавочные (фиктивные) заряды-изображения в безграничной среде. Эти заряды-изображения помещаются вне той области, в которой определяется поле. Правила построения зарядов-изображений полностью аналогичны тем, по которым строятся изображения точечных источников в оптике в системе зеркал. Зеркала имеют ту же форму, что и граничные поверхности. Величины зарядов-изображений определяются граничными условиями на поверхностях, а также требованиями одинаковости поля, создаваемого реальной системой зарядов и поверхностей, и системой, составленной из действительных зарядов и фиктивных зарядов-изображений в пространстве вблизи действительных зарядов.
В этой статье мы рассмотрим примеры использований метода изображений в электростатике.
Точечный заряд и проводящая плоскость
Пусть точечный заряд +q находится на расстоянии a от бесконечной проводящей, например, металлической плоскости с нулевым потенциалом (рис. 1 ). Какая сила действует на него?
Рис. 1
По индукции заряд +q будет наводить заряд противоположного знака на поверхности. Откуда возьмутся заряды, создающие у поверхности отрицательный заряд? Это свободные заряды (в металлах - электроны), притянутые положительным зарядом с каких-то далеких областей плоскости, либо, пришедшие из земли, если поверхность заземлена. Суммарный индуцированный заряд равен -q и будет каким-то образом распределен по поверхности. Но как именно? Ответить на этот вопрос мы пока можем лишь качественно - примерно так, как это делалось во введении.
На точечный заряд +q cо стороны поверхности действует сила притяжения к поверхности (так как наведенные заряды отрицательны). Величина силы притяжения не равна kq2/a2, поскольку отрицательный заряд не сосредоточен в одной точке, а распределен по плоскости. Поэтому значение силы меньше, чем величина kq2/a2. Здесь k - коэффициент пропорциональности, зависящий от выбора системы единиц измерений физических величин, в СИ k = 9·109 Н м2/Кл2.
Попытаемся нарисовать картину силовых линий электростатического поля заряда +q и поверхности с наведенным на ней зарядом -q. Поверхность проводника эквипотенциальна, что означает, что все точки этой поверхности имеют равный потенциал (в нашем случае потенциал поверхности равен нулю). Силовые линии поля перпендикулярны поверхности (cоставляющая электрического поля, параллельная поверхности, вызовет движение зарядов в проводнике, которое прекратится лишь тогда, когда эта составляющая поля в проводнике будет полностью скомпенсирована полем, создаваемым индуцированными зарядами). Вблизи точечного заряда картина силовых линий близка к той, которую мы имеем для одиночного заряда. Силовые линии начинаются на заряде +q, поскольку он положительный. Таким образом имеем картину силовых линий, которая изображена на рис. 2 .
Рис. 2
Здесь пунктирными линиями изображены эквипотенциальные поверхности, они перпендикулярны силовым линиям в точке пересечения.
А теперь давайте вспомним и изобразим картину силовых линий двух одинаковых по величине и противоположных по знаку точечных зарядов, расположенных на расстоянии 2а (рис. 3 ).
Рис. 3
Закройте нижнюю половину рис. 3 сравните ее с рис. 2 . Не правда ли, очень похоже! К тому же в случае двух точечных зарядов одна из эквипотенциальных поверхностей - плоскость, перпендикулярная отрезку, соединяющему заряды и делящая его пополам, то есть она расположена там же, где металлическая плоскость. Потенциал любой точки этой плоскости равен нулю. В обоих случаях поле вблизи заряда +q одно и то же. А поскольку поле одно и то же, то и силы, действующие на заряд +q в обоих случаях одинаковы. Таким образом, искомая сила равна F = k q2 / 4a2.
Задача решена, сила определена. Но ведь мы схитрили! Мы не решали задачу о заряде и поверхности, а мы решили другую задачу - о двух точечных зарядах, подобрав величину и положение заряда -q, который является зарядом-изображением, таким образом, чтобы поле в области между зарядом +q и поверхностью в обеих задачах было одинаковым.
Вернемся теперь к рис. 2 и 3 предположим, что все полупространство ниже проводящей плоскости занято проводником. В области вне проводника, где находится заряд +q ничего не изменилось, электростатическое поле там осталось таким же, что и раньше. Причем здесь поле заряда +q и проводника совпадает с полем системы заряда +q и заряда-изображения -q. А в той области пространства, где находится проводник в том случае, если мы рассматриваем задачу со сплошным проводником и зарядом, поле равно нулю, а в задаче с зарядом и его изображением поле нулю не равно. Но нас интересует только та область, где поля совпадают, так как мы хотим поле определить именно там. Предположим теперь, что мы изготовили очень тонкую поверхность из металла так, что ее форма в точности совпадает с формой какой-либо эквипотенциальной поверхности, например MN (рис. 4 ).
Рис. 4
Рекомендуем скачать другие рефераты по теме: реферат личность, реферат отношения.
1 2 3 4 5 6 7 8 9 10 11 | Следующая страница реферата