Методы решения уравнений, содержащих параметр
Категория реферата: Рефераты по математике
Теги реферата: заказать дипломную работу, русский язык 7 класс изложение
Добавил(а) на сайт: Kiriana.
Предыдущая страница реферата | 15 16 17 18 19 20 21 22 23 24 25 | Следующая страница реферата
Тема: Аналитический метод. Параметр как равноправная переменная.
Цель занятия: показать ученикам, что уравнения, содержащие параметр, можно решать не только относительно переменной, но и относительно параметра.
Литература для учителя: см. [1] , [5], [6], [7], [14]
Литература для ученика: см. [3]
Краткое содержание: решение уравнений относительно параметра. Решение уравнений, не содержащих параметра, но использование методов решения уравнений, содержащих параметр. Например: решения уравнения четвертой степени не относительно переменной, а относительно числа (п.4.1.4).
Занятие № 6.
Тема: Метод исследования области значения функции.
Цель занятия: научить учеников использовать область значения функции.
Литература для учителя: см. [1] , [15]
Литература для ученика: см. [15]
Краткое содержание: если необходимо найти, при каких значениях переменной две функции равны, а пересечение их областей значений есть одно значение, то обе функции можно приравнять к этому значению и найти значение переменной ( и , а , то уравнение равносильно системе ).
Ученики при изучении области значения зачастую не понимают ее практического значения. Это занятие покажет им, как можно использовать данное свойство функций.
Занятие № 7.
Тема: Графический метод. Координатная плоскость (x, y).
Цель занятия: научить использовать, при решении уравнений, координатную плоскость.
Литература для учителя: см. [1] , [4], [9], [11], [19], [24]
Литература для ученика: см. [11], [24]
Краткое содержание: Основой решения уравнений данным методом является построение графиков функций правой и левой частей и рассмотрение количества точек пересечения в зависимости от значения параметра. Поэтому задачи решаемые данным методом имеют свою специфику, а именно, рассматриваются задачи на нахождение количества корней уравнения при различных значениях параметра.
Занятие № 8.
Тема: Графический метод. Координатная плоскость (x, а).
Цель занятия: научить использовать, при решении уравнений, координатную плоскость (x, а); показать особенности решения при помощи этой плоскости.
Литература для учителя: см. [1] , [9], [19]
Литература для ученика: см. [19]
Краткое содержание: в отличие от предыдущего занятия здесь используется координатная плоскость (x, а) при решении уравнений, содержащих параметр.
Опытное преподавание.
Опытное преподавание осуществлялось во время прохождения практики на V курсе. Практика проходила в 10 классе 28 школы. Было разработано и проведено два занятия на тему «Параметр и решение линейных и простейших квадратичных уравнений с параметром».
Цели занятий:
ввести понятие параметра;
научить решать линейные и простейшие квадратичные уравнения с параметром;
повторить методы решения квадратных уравнений;
научить мыслить логически;
научить видеть особые значения параметра, которым соответствуют частные решения данного уравнения;
Литература для учителя: см. [1], [3], [16]
Литература для ученика: см. [3], [16]
Разработка факультативного занятия на тему: «Параметр и решение линейных уравнений и простейших квадратных уравнений с параметром».
Ход занятия.
Для того чтобы понять, что такое параметр разберем несколько простых примеров, с помощью которых мы и попытаемся понять смысл параметра.
Рассмотрим уравнение (1).
Зададим себе вопрос, как мы будем решать это уравнение. При делении на неизвестную величину необходимо учесть, что эта величина может быть равна нулю. Рассмотрим случай когда .
При получаем следующее уравнение , которое не имеет решения. Если же , то мы можем разделить на a и получим .
Теперь запишем ответ, но нужно учитывать то, что мы рассматривали различные значения неизвестной а и поэтому ответ нужно записывать для всех случаев.
Ответ. При ;
При нет корней.
Следующее уравнение (2) также как и (1) требует рассмотрения случаев, когда коэффициент при равен нулю или нет.
Решение.
, то есть или . При первом значении мы получаем уравнение , у которого решений нет, а при втором значении получаем уравнение , решением которого является все множество действительных чисел.
Если , то мы можем разделить на коэффициент при х и получим .
Запишем ответ.
Ответ. Если , то ;
Если , то нет решения;
Рекомендуем скачать другие рефераты по теме: диплом купить, allbest.
Предыдущая страница реферата | 15 16 17 18 19 20 21 22 23 24 25 | Следующая страница реферата