Приближённое решение алгебраических и трансцендентных уравнений
Категория реферата: Рефераты по математике
Теги реферата: виды рефератов, бесплатные шпоры
Добавил(а) на сайт: Нотович.
Предыдущая страница реферата | 1 2 3 4 5 6 7 8 9 10 11 | Следующая страница реферата
Ответ: корень уравнения с точностью до 0,001.
5. Метод хорд (секущих).
Этот метод применяется при решении уравнений вида , если корень уравнения отделён, т.е. и выполняются условия:
1) (функция принимает значения разных знаков на концах отрезка );
2) производная сохраняет знак на отрезке (функция либо возрастает, либо убывает на отрезке ).
Первое приближение корня находится по формуле: .
Для следующего приближения из отрезков и выбирается тот, на концах которого функция имеет значения разных знаков.
Тогда второе приближение вычисляется по формуле:
, если или , если .
Вычисления продолжаются до тех пор, пока не перестанут изменяться те десятичные знаки, которые нужно оставить в ответе.
6. Метод касательных (Ньютона).
Этот метод применяется, если уравнение имеет корень , и выполняются условия:
1) (функция принимает значения разных знаков на концах отрезка );
2) производные и сохраняют знак на отрезке (т.е. функция либо возрастает, либо убывает на отрезке , сохраняя при этом направление выпуклости).
На отрезке выбирается такое число , при котором имеет тот же знак, что и , т. е. выполняется условие . Таким образом, выбирается точка с абсциссой , в которой касательная к кривой на отрезке пересекает ось . За точку сначала удобно выбирать один из концов отрезка.
Первое приближение корня определяется по формуле: .
Второе приближение корня определяется по формуле: .
Вычисления ведутся до совпадения десятичных знаков, которые необходимы в ответе, или при заданной точности - до выполнения неравенства .
Достоинства метода: простота, быстрота сходимости.
Недостатки метода: вычисление производной и трудность выбора начального положения.
7. Комбинированный метод хорд и касательных.
Если выполняются условия:
1) ,
2) и сохраняют знак на отрезке ,
то приближения корня уравнения по методу хорд и по методу касательных подходят к значению этого корня с противоположных сторон. Поэтому для быстроты нахождения корня удобно применять оба метода одновременно. Т.к. один метод даёт значение корня с недостатком, а другой – с избытком, то достаточно легко получить заданную степень точности корня.
Рекомендуем скачать другие рефераты по теме: шпаргалки теория права, доклад 8 класс.
Предыдущая страница реферата | 1 2 3 4 5 6 7 8 9 10 11 | Следующая страница реферата