Производная и ее применение в алгебре, геометрии, физике
Категория реферата: Рефераты по математике
Теги реферата: новейшие рефераты, ресурсы реферат
Добавил(а) на сайт: Янборисов.
1 2 3 4 5 6 7 8 9 10 11 | Следующая страница реферата
Производная и ее применение в алгебре, геометрии, физике
Научная работа
Автор Бирюков Павел Вячеславович.
Гимназия №1 города Полярные Зори
Январь-май 2004 г.
Производная функция
Поставим своей задачей определить скорость, с которой изменяется величина у в зависимости от изменения величины х. Так как нас интересуют всевозможные случаи, то мы не будем придавать определенного физического смысла зависимости y=f(x), т.е. будем рассматривать величины х и у как математические.
Рассмотрим функцию y=f(x), непрерывную на отрезке [а, b]. Возьмем два числа на этом отрезке: х и х+∆x; первое, х, в ходе всего рассуждения считаем неизменным, ∆x — его приращением. Приращение ∆x; аргумента обусловливает приращение ∆у функции, причем:
∆y=f(x+∆x)-f(x). (I)
Найдем отношение приращения ∆у функции к приращению ∆x аргумента:
∆у/∆x=(f(x+∆x)-f(x))/ ∆x. (II)
По предыдущему, это отношение представляет собой среднюю скорость изменения у относительно х на отрезке
[x, x+∆x].
Будем теперь неограниченно приближать ∆x к нулю.
Для непрерывной функции f(x) стремление ∆x к нулю вызывает стремление к нулю ∆у, отношение (II) становится при этом отношением бесконечно малых, вообще величиной переменной. Пусть это переменное отношение (II) имеет вполне определенный предел(утверждать, что определенный предел отношения ∆x/∆у всегда существует нельзя), обозначим его символом f '(х).
lim((f(x+∆x)-f(x))/ ∆x)=f’(x) ∆x→0 |
(III)
С физической точки зрения этот предел есть значение скорости изменения функции f(x) относительно ее аргумента при данном значении х этого аргумента. В анализе этот предел называют производной данной функции в точке х.
Определение. Производной данной функции в точки х называется предел отношения приращения этой функции к приращению аргумента в точке х, когда приращение аргумента стремится к нулю.
2°. Пусть каждому значению аргумента х соответствует определенное значение скорости изменения функции f(x). Тогда скорость f '(х) есть новая функция аргумента х, она называется производной функцией от данной функции f(x).
Например, производная функция от квадратной функции Q=bt+at2 есть линейная функция Q' = b + 2at.
3°. Производная функция обозначается так: 1) у данной функции ставится штрих на том месте, где обычно помещается показатель степени, или 2) перед обозначением
данной функции ставится символ d/dx.
Если данная функция обозначена буквой у, то ее производная может быть обозначена:
1) у', читать: «производная функции у»,
Рекомендуем скачать другие рефераты по теме: греция реферат, республика реферат.
1 2 3 4 5 6 7 8 9 10 11 | Следующая страница реферата