Производная и ее применение в алгебре, геометрии, физике
Категория реферата: Рефераты по математике
Теги реферата: новейшие рефераты, ресурсы реферат
Добавил(а) на сайт: Янборисов.
Предыдущая страница реферата | 17 18 19 20 21 22 23 24 25 26 27 | Следующая страница реферата
Решение. По формуле (III)
dy = у'*dx.
Находим у': ________ ________
y’ = e2x*2/( 2√ (e2x—1)) = e2x/ √ (e2x—1).
Значит _______
dy = e2x*dx/ √ (e2x—1)
5°. Из формулы (III) следует;
f’(x)=dy/dx,
т. е. производная функции равна отношению дифференциала функции к дифференциалу аргумента. Это иллюстрирует черт., где
dy/dx = PT/MP = tgφ=f '(x)
для произвольного значения dx = MP.
Приложения понятия дифференциала к приближенным вычислениям
1°. Разность ∆y—dy—бесконечно малая высшего порядка малости, чем ∆x, поэтому при достаточно малом ∆x
∆y ≈ dy =f '(х)∆x |
(IV)
Это означает, что при малых изменениях аргумента (от начального значения х) величину изменения функции y=f(x) можно приближенно считать пропорциональной величине изменения аргумента с коэффициентом пропорциональности, равным значению производной f '(x); кривую y=f (x) при этом можно приближенно заменить касательной к ней в точке х.
Так как ∆у = f(х + ∆x)—f (x), то, заменяя в формуле (IV) ∆у его выражением, имеем: f(x+∆x) - f(x) ≈ f '(x)* ∆x
f(x+∆x) ≈ f(x) + f '(x)* ∆x |
(V)
В математике производную применяют для:
Исследования функции на монотонность, экстремумы.
Нахождения касательной к графику.
Нахождения наибольших, наименьших значений функций.
Нахождения дифференциала для приближенных вычислений.
Для доказательства неравенств.
Рассмотрю некоторые примеры применения производной в алгебре, геометрии и физике.
Задача 1. Найти сумму 1+2*1/3+3(1/3)2+…+100(1/3)99;
Решение.
Найду сумму g(x)=1+2x+3x2+…+100x99 и подставлю в нее x=1/3.
Для этого потребуется вспомогательная функция f(x)=x+x2+…+x100.
Ясно, что f ’(x)=g(x).
f(x) — сумма геометрической прогрессии.
Легко подсчитать, что f(x)=(x—x101)/(1—x). Значит,
g(x) = f ’(x) = ((1—101x100)(1—x)—(x—x100)(-1))/(1—x)2=(1—102x100+101x101)(1—x)2.
Подставлю x = 1/3.
Ответ: 0,25(9—205*3-99)
Задача 2. Найти сумму 1+2*3+3*32+…+100*399;
Решение.
Найду сумму g(x)=1+2x+3x2+…+100x99 и подставлю в нее x=1/3.
Для этого потребуется вспомогательная функция f(x)=x+x2+…+x100.
Ясно, что f ’(x)=g(x).
f(x) — сумма геометрической прогрессии.
Легко подсчитать, что f(x)=(x—x101)/(1—x). Значит,
g(x) = f ’(x) = ((1—101x100)(1—x)—(x—x100)(-1))/(1—x)2=(1—102x100+101x101)(1—x)2.
Подставлю x = 3.
Ответ: ≈ 2,078176333426855507665737416578*1050.
Задача 3. Найдите площадь треугольника AMB, если A и B — точки пересечения с осью OX касательных, проведенных к графику y = (9—x2)/6 из точки M(4;3).
Решение.
Рекомендуем скачать другие рефераты по теме: греция реферат, республика реферат.
Предыдущая страница реферата | 17 18 19 20 21 22 23 24 25 26 27 | Следующая страница реферата