Производная и ее применение в алгебре, геометрии, физике
Категория реферата: Рефераты по математике
Теги реферата: новейшие рефераты, ресурсы реферат
Добавил(а) на сайт: Янборисов.
Предыдущая страница реферата | 16 17 18 19 20 21 22 23 24 25 26 | Следующая страница реферата
Очевидно, dy может быть и более ∆y. Это будет, например, если поднимающаяся кривая MN будет вогнута вниз.
5°. Пример. Для функции у=x2 при изменении х от 3 до 3,1 приращение ∆y = 2x*∆x + + ∆x2 = 2*3*0,1 + 0, 12 = 0, 61 Дифференциал dy = 2х *∆x = 2*3 * 0, 1 = 0,6. Принимая dy за приближенное значение ∆у, имеем: абсолютная погрешность приближения равна разности ∆у—dy=0,01, а относительная погрешность приближения есть отношение:
(∆y—dy)/dy=00,1/0,60=1,7%
6°. Разность между приращением и дифференциалом функции, ∆у—dy, высшего порядка малости, чем приращение аргумента, ∆x.
Действительно, отношение ∆y/∆x отличается от своего предела f '(x) на бесконечно малую α, причем α → 0 при стремлении ∆x к нулю,
∆y/∆x — f '(x)= α.
Производя вычитание в левой части равенства, получаем:
(∆y-f '(x)*∆x)/∆x = α, или (∆у - dy) ∆x= α,
lim((∆y-dy)/ ∆x) = lim α = 0. ∆x → 0 ∆x → 0 |
7°. Из сказанного следует: дифференциал функции есть приближенное значение ее приращения с относительной погрешностью, стремящейся к нулю вместе с приращением аргумента.
8°. Из изложенного следует, что дифференциал dy функции y=f(x) обладает двумя свойствами:
1) dy пропорционален ∆x (dy = k∆x, где k=y');
2) отношение (∆y—dy)/∆x стремится к нулю при стремлении ∆x к нулю.
Обратно. Если величина z обладает двумя свойствами:
1) z=k∆x и 2) то z есть дифференциал функции у.
Доказательство. Внося из (1) значение z во (2), имеем:
т. е. k = y',
а следовательно,
z = k∆x = y’∆x,
т. е. z есть дифференциал функции у.
Таким образом, эти два условия полностью определяют дифференциал.
Дифференциал аргумента. Производная как отношение дифференциалов
1°. Определение. Дифференциалом (dx) аргумента х называется, его приращение, ∆x:
dx = ∆х (II)
Может быть, некоторым основанием к этому служит то, что дифференциал функции у=х и приращение ее аргумента совпадают. Действительно,
dy = (x)' ∆x, или dy = ∆x.
Но так как
dy = dx, то dx = ∆x,
т.е. дифференциал функции у =х и приращение ее аргумента совпадают.
2°. Внеся в формулу (I) значение ∆x=dx, получаем:
dy = f ’(x)*dx, |
(III)
т. е. дифференциал функции есть произведение ее производной на дифференциал аргумента.
3°. Формула (III) обладает замечательным свойством, именно: формула dy = f '(x)dx справедлива и в том случае, если x не является независимой переменной величиной, а является функцией другого аргумента, например и.
Действительно, если х есть функция от и, то f(x) есть сложная функция от u приращение dx обусловлено приращением ∆u, и dy надо вычислять по формуле;
dy = f 'u (x)* ∆u.
Но
f 'u (x)= f’x (x)* x’u
Значит,
dy = f’(x)—x'u * ∆u.
Но так как, по определению,
x'u ∆u = dx,
то, следовательно,
dy = f '(x)dx.
4°. Пример. Найти дифференциал функции:
_____________________
у = √ (e2x—1).
Рекомендуем скачать другие рефераты по теме: греция реферат, республика реферат.
Предыдущая страница реферата | 16 17 18 19 20 21 22 23 24 25 26 | Следующая страница реферата