Производная и ее применение в алгебре, геометрии, физике
Категория реферата: Рефераты по математике
Теги реферата: новейшие рефераты, ресурсы реферат
Добавил(а) на сайт: Янборисов.
Предыдущая страница реферата | 18 19 20 21 22 23 24 25 26 27 28 | Следующая страница реферата
x = 2√5 R/15 _ _
Vпр.max = 2(4R2*2√5R/(5*15) – 2√5R*4R2/(45*5) - _ 40√5R3/(225*15)) = 16R3√5(1 – 1/3 – 5/45)/75 = 16√5R3/135.
Ответ: 16√5R3/135 м3 при H = 2√5R/15.
Задача 9. В конус вписан цилиндр, одно из оснований которого лежит в плоскости основания конуса, а окружность другого основания принадлежит боковой поверхности конуса. Правильная четырехугольная призма расположена так, что ее нижнее основание лежит в плоскости верхнего основания цилиндра, вершины верхнего основания принадлежат боковой поверхности конуса. Отношение длины диагонали основания призмы к ее высоте равно отношению длины диаметра цилиндра к его высоте. При какой высоте цилиндра объем призмы будет наибольшим? Найти этот объем призмы, если высота конуса – H и радиус основания – R.
Дано. ASO – конус;
SO = H;
AO = R;
CL/CM = BK/BN;
Найти. BN, чтобы Vпр = max
Решение. BN = x, CM = h, Vпр = Sосн CM = CL2h/2.
∆CSD подобен ∆ASO: CD/AO = SD/SO;
CD/R = (H – x - h)/H;
CD = R(H – x -h)/H.
∆BSE подобен ∆ASO: BE/AO = SE/SO;
BE/R = (H - h)/H;
BE = R(H - h)/H.
Находим отношение CD/BE = (H – x - h)/(H - x).
Исходя из условия (CL/CM = BK/BN) задачи делаем вывод,
что CD/BE = h/x, т. е. (H – x - h)/(H - x) = h/x => h = (Hx – x2)/H
Тогда CD = R(H – x – (Hx – x2)/H)/H = R(H2 – Hx – Hx +x2)/H2 = R(H - x)2/H2,
CL = 2CD = 2R(H - x)2/H2.
V = 4R2(H - x)4(H - x)x/(2H*H4) = 2R2(H - x)5x/H5;
V’(x) = 2R2((H - x)5 – 5(H - x)4 x)/H5 = 0,
(H – x) – 5x = 0, x = H/6.
V = 2HR2(5H/6)5/(6H5) = 2R2H*55/66.
Ответ: при H/6, Vmax = 2R2H*55/66.
В физике производная применяется в основном для вычисления наибольших или наименьших значений для каких-либо величин.
Задача 1.Потенциальная энергия U поля частицы, в котором находится другая, точно такая же частица имеет вид: U = a/r2 – b/r, где a и b — положительные постоянные, r — расстояние между частицами.
Найти:
а) значение r0 соответствующее равновесному положению частицы;
б) выяснить устойчиво ли это положение;
в) Fmax значение силы притяжения;
г) изобразить примерные графики зависимости U(r) и F(r).
U = a/r2 – b/r; Решение:
a и b — counts; Для определения r0 соответствующего равновесному
r0 — ? положению частицы исследуем f = U(r) на экстремум.
Fmax — ? Используя связь между потенциальной энергией поля
U и F, тогда F = -dU/dr, получим F = -dU/dr = - (-2a/r3+b/r2) = 0;
при этом r = r0; 2a/r3 = b/r2 => r0 = 2a/b;
Устойчивое или неустойчивое равновесие определим по знаку второй производной:
d2U/dr02= dF/dr0=-6a/r04 + 2b/r03 = -6a/(2a/b)4+2b/(2a/b)3=(-b4/8a3)<0;
равновесие устойчивое.
Для определения Fmax притяжения исследую на экстремумы функцию:
F = 2a/r3— b/r2;
dF/dr = -6a/r4 + 2b/ r3 = 0;
при r = r1 = 3a/b;
подставляя, получу Fmax = 2a/r31 — b/r31 = - b3/27a2;
U(r) = 0; при r = a/b; U(r)min при r = 2, a/b = r0;
F = 0; F(r)max при r = r1 = 3a/b;
Задача 2. Три резистора сопротивлениями R1, R2, R3 соединены параллельно. Сопротивление R1 в 9 раз больше сопротивления R2. Если все три резистора соединить последовательно, то сопротивление цепи равно R.
Рекомендуем скачать другие рефераты по теме: греция реферат, республика реферат.
Предыдущая страница реферата | 18 19 20 21 22 23 24 25 26 27 28 | Следующая страница реферата