Теория цепных дробей
Категория реферата: Рефераты по математике
Теги реферата: республика реферат, дипломная работа по праву
Добавил(а) на сайт: Ven'jamin.
Предыдущая страница реферата | 1 2 3 4 5 6 7 8 | Следующая страница реферата
2
Рефераты | Рефераты по математике | Теория цепных дробейТеория цепных дробейКатегория реферата: Рефераты по математике Теги реферата: республика реферат, дипломная работа по праву Добавил(а) на сайт: Ven'jamin. Предыдущая страница реферата | 1 2 3 4 5 6 7 8 | Следующая страница реферата 2 |
3 |
11 |
14 |
25 |
114 |
367 |
Подходящие дроби () равны соответственно ; ; ; ; ; ; ; .
Практически нахождение неполных частных и подходящих дробей удобно объединить в одну краткую схему, которую приведем для =(2, 3, 1, 4, 2)
.
А сейчас рассмотрим ряд свойств подходящих дробей.
Теорема: При k=1, 2, …, n выполняется равенствоДоказательство: Проведем индукцию по k:
При k=1 равенство справедливо, так как .
Пусть это равенство верно при некотором k=n ().
Докажем справедливость равенства при k=n+1.
, то есть равенство верно при k=n+1.
Согласно принципу полной математической индукции равенство верно для всех k().
Теорема: Числитель и знаменатель любой подходящей дроби – взаимно простые числа, то есть всякая k–подходящая дробь несократима.Доказательство: Докажем это свойство методом от противного. По предыдущему свойству имеем .
Пусть , то есть , тогда из равенства следует, что делится на без остатка, что невозможно. Значит, наше допущение неверно, а верно то, что требовалось доказать, то есть .
Теорема: При () ()Доказательство: Первое соотношение можно получить из равенства , доказанного выше, путем деления обеих частей на . Получаем
, что и требовалось доказать.
Докажем второе соотношение.
.
Теорема доказана полностью.
Теорема: Знаменатели подходящих дробей к цепной дроби, начиная с первого, образуют монотонно возрастающую последовательность, то есть 1=.Доказательство: , , так что и положительны.