Теория Вероятностей
Категория реферата: Рефераты по математике
Теги реферата: дипломная работа методика, купить диплом о высшем образовании
Добавил(а) на сайт: Shelagin.
Предыдущая страница реферата | 1 2 3 4 5 6 7 8 9 10 11 | Следующая страница реферата
В самом деле, согласно (12.8) достаточно выбрать в качестве числа N наименьшее из натуральных чисел, удовлетворяющих неравенству , то есть
(12.10)Это означает следующее. Какие бы числа и мы ни выбрали, если сделать количество n независимых испытаний больше, чем число N, то среднее значение случайной величины будет отличаться от математического ожидания меньше, чем на ε с вероятностью большей, чем β. Иначе говоря, при неограниченном увеличении числа независимых испытаний среднее значение случайной величины стремится к математическому ожиданию Е с вероятностью, приближающейся к единице.
13.Испытания по схеме Бернулли.Так называется следующая серия независимых испытаний. Пусть производится n испытаний. В i-том испытании может осуществиться случайное событие Ai с вероятностью Рi,i=1,…,n. Все события Аi независимы в совокупности. То есть вероятность события Аi не зависит от того, осуществляются или нет события Аj,j=1,…,n, ji. Рассмотрим здесь такой частный случай, когда все вероятности Рi равны друг другу и равны p,0‹p‹1. То есть
Р(Аi)=p, P(Ai*)=q, q=1-p, 0‹p‹1, 0‹q‹1, i=1,…,n(13.1)
Например, пусть испытания состоят в том, что случайная точка в i-том испытании обязательно появляется в квадрате со стороной равной единице. Событие Аi состоит в том, что точка оказывается в четверти круга, вписанного в квадрат и имеющего радиус равный единице (см.раздел7). Согласно (7.2) имеем
Р(Ai)=p=(13.2)
Справедливо следующее утверждение.
Теорема Бернулли: Пусть производится n испытаний по схеме Бернулли. Пусть события Аi осуществились в m испытаниях.
Для любых чисел и найдется такое натуральное число N, что при числе испытаний n>N будет справедливо неравенство
P(|m/n–p|<)>(13.3)
В самом деле, свяжем с i-тым испытанием случайную величину . Пусть эта величина принимает значение равное единице, если осуществляется событие Аi, и принимает значение равное нулю, если событие Аi не осуществляется, т.е. осуществляется противоположное событие Аi*. Вычислим математическое ожидание Еi и дисперсию Di случайной величины . Имеем
pq=p(13.4)pppqq∙p+p∙q=p∙q∙(q+p)=p∙q∙1=p∙q(13.5)
Так как в нашем случае
(13.6)
то из закона больших чисел (12.9),(12.10) получаем неравенство (13.3), если только
(13.7)
Это и доказывает теорему Бернулли.
Например, если мы хотим проверить теорему Бернулли на примере вычисления числа π с точностью до с вероятностью большей, чем , то нам надо сделать испытания по схеме Бернулли в соответствии с разделом 7, т.е. получить согласно текущему разделу неравенство
P(|m/n–π/4|<0.01)>0.99(13.8)
Для этого согласно (13.7) достаточно выбрать число
(13.9)с большим запасом.
Такое испытание было сделано на компьютере по программе, приведенной в следующем разделе. Получилось
4∙m/n=3.1424 (13.10)
Мы знаем, что число π=3.1415925626…. То есть действительно получилось число с точностью по крайней мере до 0.01.
14.Программа вычисления числа π по схеме Бернулли.CLS
Рекомендуем скачать другие рефераты по теме: российская федерация реферат, антикризисное управление предприятием.
Предыдущая страница реферата | 1 2 3 4 5 6 7 8 9 10 11 | Следующая страница реферата