Вопросы к гос. экзамену по дисциплине "Математика – Алгебра"
Категория реферата: Рефераты по математике
Теги реферата: рефераты, моря реферат
Добавил(а) на сайт: Айвазовский.
Предыдущая страница реферата | 1 2 3 4 5 6 7 8 9 10 11 | Следующая страница реферата
частичный порядок: полный порядок:
не обладает свойством обладает связностью
связности
Остановимся на отношении эквивалентости, то есть на отношении WÌ A*A, обладающее свойствами рефлексивности, симметричности, транзитивности. Легко проверить, что примерами таких отношений являются "=", "~", "сравнение по модулю", изоморфизм алгебр и другие.
Отношение эквивалентности играет большую роль в математике, значимость его определяется тем, что оно задает разбиение, а потому позволяет получать новые множества. Рассмотрим это подробнее.
Разбиением множества называется совокупность непустых подмножеств, непересекающихся, объединение которых совпадает с данным множеством.
Имеет место теорема, которая позволяет рассматривать отношение эквивалентности как разбиение.
Теорема 2. Бинарное отношение задает на A¹ 0 разбиение.
Для доказательства теоремы введем такое понятие как класс эквивалентности:
Ka={ x/xWa /x,aÎ A} a-образующий элемент класса.
свойствами рефлексивности, симметричности, транзитивности. Легко проверить, что примерами таких отношений являются "=", "~", "сравнение по модулю", изоморфизм алгебр и другие.
Отношение эквивалентности играет большую роль в математике, значимость его определяется тем, что оно задает разбиение, а потому позволяет получать новые множества. Рассмотрим это подробнее.
Разбиением множества называется совокупность непустых подмножеств, непересекающихся, объединение которых совпадает с данным множеством.
Имеет место теорема, которая позволяет рассматривать отношение эквивалентности как разбиение.
Теорема 2. Бинарное отношение задает на A¹ 0 разбиение.
Для доказательства теоремы введем такое понятие как класс эквивалентности:
a-образующий элемент класса.
Классы эквивалентности обладают свойствами:
1. " aÎ A попадает в какой-либо класс, что означает, что Ka¹ 0 . Это утверждение следует из введенного определения класса.
Любые два элемента из класса находятся в отношении, т.е. если b,cÎ K a , b w c.c,bÎ KaÞ a w c, Þ c w a , Þ c w b
a w b a w b
Это свойство позволяет утверждать, что любой представитель класса может являться его образующим.
3° . Классы не пересекаются, т.е. КаÇ Кb=Æ
Рекомендуем скачать другие рефераты по теме: бесплатные конспекты, реферат на тему види.
Предыдущая страница реферата | 1 2 3 4 5 6 7 8 9 10 11 | Следующая страница реферата