Билеты по математическому анализу
Категория реферата: Рефераты по математике
Теги реферата: дипломная работа по менеджменту, курсовая работа 2011
Добавил(а) на сайт: Нимфа.
Предыдущая страница реферата | 3 4 5 6 7 8 9 10 11 12 13 | Следующая страница реферата
1) Все элементарные ф-ции непрер. во внутренних т-ках своих областей определения => при исл. элементарных ф-ций нужно обращать внимание на гранич. т-ки обл-ти опр-ния.
2) Если ф-ция задана кусочно, т.е. различными соотношениями на частях своей обл. опр., то подозрительными на разрыв явл. граничные т-ки частей обл-ти опр.
3) Св-ва непр. ф-ций. Многие св-ва непр. ф-ций легко понять опираясь на их геометр. св-ва:
график непр. ф-ции на пр-ке D представляет сплошную(без р-рывов) кривую на пл-тях и след-но может отображена без отрыва ручки от бумаги.
I) Ф-ция непр. в т-ке х0 обязательно ограничена в окрестностях этой т-ки.(св-во локал. огранич-ти)
Док-во использует опр-ние на языке e и d . Если f непр. в т-ке х0 то взяв любое e >0 можно найти d >0 ½ f(x)-f(x0)½ <e при ½ х-х0½ <d ~ f(x0)-e <f(x)<f(x0)+e в окрестности в т-ке х0.
II) Св-ва сохранения знака Если f(x) непр. в т-ке х0 и f(x0)¹ 0 то $ окрестность этой т-ки в которой ф-ция принимает тот же знак что и знак х0.
III)Теорема о промежуточных знач. ф-ции f(x) непр. на отрезке [a,b] и f(a)=A, f(b)=B причем A¹ B => CÎ (A,B) $ cÎ (a,b):f(c)=C f(c)=f(c‘)=f(c‘‘).
IV)Теорема о прохожд. непр. ф-ции через 0. Если f(x) непр. на отрезке (a,b) и принимает на концах этого отрезка значение разных знаков f(a) f(b), то $ т-ка сÎ (a,b).
Док-во Одновременно содержит способ нах-ния корня ур-ния f(x0)=0 методом деления отрезка пополам. f(d)=0 c=d Т-ма доказана.
Пусть f(d)¹ 0 [a,d] или [d,b] ф-ция f принимает значение разных знаков. Пусть для определ-ти [a,d] обозначим через [a1,b1]. Разделим этот отрезок на 2 и проведем рассуждение первого шага док-ва в итоге или найдем искомую т-ку d или перейдем к новому отрезку [a2,d2] продолжая этот процесс мы получим посл-ть вложения отрезков [a1,b1]>[a2,b2] длинна которых (a-b)/2^n® 0, а по т-ме о вл-ных отрезков эти отрезки стягиваются к т-ке с. Т-ка с явл. искомой с:f(c)=0. Действительно если допустить, что f(c)¹ 0 то по св-ву сохр. знаков в некоторой d окрестности, т-ке с f имеет тот же знак что и значение f(c) между тем отрезки [an,bn] с достаточно N попабают в эту окрестность и по построению f имеет разный знак на концах этих отрезков.
Непр. ф-ции на пр-кеf непр. в т-ке х0 => f непрер. в т-ке х0 и f(x0)¹ 0 => f непр. на [a,b] и f(x)* f(b)=0 (f(x)* f(b)>0 в окр-ти х0) => $ сÎ (a,b). f(c)=0 сл-но 2 св-ва непр. ф-ции на отрезке обоснованны.
Т-ма 1(о огран. непр. ф-ции на отрезке). Если f(x) непр. на [a,b], тогда f(x) огран. на этом отрезке, т.е. $ с>0:½ f(x)½ £ c " xÎ (a,b).
Т-ма 2( о $ экстр. непр. ф-ции на отр.). Если f(x) непр. на [a,b], тогда она достигает своего экстр. на этом отрезке, т.е. $ т-ка max X*:f(x*)³ f(x) " xÎ [a,b], т-ка min X_:f(x_)£ f(x) " xÎ [a,b].
Теорема ВЕЙЕРШТРАССА. Эти теремы неверны если замкнутые отрезки заменить на др. пр-ки
Контрпример 1. f(x)=1/2 на (0;1] ® f – неогр. на (0;1] хотя и непрерывны.
Контрпример 2. f(x)=x; на (0;1) f(x) – непр. inf(xÎ (0;1))x=0, но т-ки x_Î (0;1):f(x_)=0, т-ки x*, хотя sup(xÎ (0;1))x=1
Док-во т-мы 1. Используем метод деления отрезка пополам. Начинаем от противного; f неогр. на [a,b], разделим его, т.е. тогда отрезки [a;c][c;b] f(x) неогр.
Обозн. [a1,b1] и педелим отрез. [a2,b2], где f-неогр. Продолжая процедуру деления неогр. получаем послед. влож. отрезки [an;bn] котор. оттяг. к т-ке d (d=c с надстройкой) из отрезка [a,b], общее для всех отр. Тогда с одной стороны f(x) неогр. в окр-ти т-ки d на конц. отрезка [an,bn], но с др. стороны f непр. на [a,b] и => в т-ке d и по св-ву она непр. в некоторой окрестности d. Оно огран. в d => получаем против. Поскольку в любой окр-ти т-ки d нах-ся все отрезки [an;bn] с достаточно большим 0.
Док-во т-мы 2. Обозначим E(f) – множиством значений ф-ии f(x) на отр. [a,b] по предыд. т-ме это мн-во огран. и сл-но имеет конечные точные грани supE(f)=supf(x)=(при хÎ [a,b])=M(<¥ ). InfE(f)= inff(x)=m(m>-¥ ). Для опр. докажем [a,b] f(x) достигает макс. на [a,b], т.е. $ х*:f(x)=M. Допустим противное, такой т-ки не $ и сл-но f(x)<M " xÎ [a,b] рассмотрим вспомогат. ф-цию g(x)=1/(M-f(x) при хÎ [a,b]. g(x) – непр. как отношение 2-х непр. ф-ций и то знач. 0 согластно т-ме 1 g(x)- огран. т.е. $ c>0
!0<g(x)£ c g³ 0, на [a,b] – 1/(M-f(x))£ c => 1£ c(M-f(x)) => f(x) £ M-1/c " xÎ [a,b]
Однако это нер-во противор., т.к. М-точная верхн. грань f на [a,b] а в правой части стоит “C”
Следствие: если f(x) непр. [a,b]тогда она принимает все знач. заключ. Между ее max и min, т.е. E(f)=[m;M], где m и M –max и min f на отрезке.
Дифференцирование ф-ций. Пр-ные и дифференциалы выс. Порядков. Теорема Ферма Теорема Ролля Теорема Логранджа Теорема Коши Правило Лопиталя 16. Дифференцирование ф-цийЦентральная идея диффер. ф-ций явл-ся изучение гладких ф-ций (без изломов и р-рывов кривые) с помощью понятия пр-ной или с помощью линейных ф-ций y=kx+b обладает простейшими наглядн. ф-циями; у=k‘ => k>0 то у возр. при всех х, k<0-то у убыв. при всех х, k=0 – ф-ция постоянна
Определение пр-ной
Рекомендуем скачать другие рефераты по теме: процесс реферат, содержание реферата курсовые работы.
Предыдущая страница реферата | 3 4 5 6 7 8 9 10 11 12 13 | Следующая страница реферата