Билеты по математическому анализу
Категория реферата: Рефераты по математике
Теги реферата: дипломная работа по менеджменту, курсовая работа 2011
Добавил(а) на сайт: Нимфа.
Предыдущая страница реферата | 1 2 3 4 5 6 7 8 9 10 11 | Следующая страница реферата
Док-м что ф-ция у монотонно убывает и огран. сверху => монотонное возр. посл-ти (1) и ограниченность ее сверх. Поскольку lg x явл-ся монотонно возр., но монотонное убыв. ф-ции у и ее огранич. сверху эквивалентны том, что ф-ция lgy, которая равняется 1/хlg(1+x) (2) имеет те же самые св-ва, т.е. 0<x1<x2, то тогда 1/x1* lg(1+x1)>1/x2* * lg(1+x2) (3). Огранич. сверху $ M:1/xlg(1+x)£ lgM " x>0 (4). Возьмем любую лин. ф-цию вида y=kx которая превосходит lg(1+x) при всех x>0.
tga 1=(lg(1+x1))/x1 a 1>a 2=>tga 1>tga 2
tga 2=(lg(1+x2))/x2
Поскольку a 1>a 2, то tga 1>tga 2, а это равносильно равенству (3). Поскольку y>lg(1+x) " x>0 => kx>
>lg(1+x) " x>0
Принимая во внимания ф-ции у с пос-ть xn приходим к нужному утверждению. Число е явл-ся неизбежным спутником динамических процессов: почти всегда показатели изменяющиеся во времени характеризующие такие процессы зависят от времени через экспонициальную ф-цию y=e^x и ее модификации.
Пр-р: если ставка сл-ных % равна r и инвестор положил в банк первоначальный вклад равный Р причем % начисляются m раз в год (r- годовая ставка) тогда через n- лет наращенная сумма нач-ся по ф-ле сл. % при m кратном их начислению.
Sn=P(1+r/m)^mn (5) Предположим теперь % нач-ся непрерывным образом, т.е. число периодов нач-ния неограничено ув-ся. Мат-ки это соотв-ет тому, что выражение (5) надо р-равать, как общий член посл-ти Xm, а непрерывному нач-нию соот-ет наращенная ф-ция lim(n® ¥ )P(1+r/m)^mn=Pe^rn
Lg(e)x имеет спец. Обозначение lnx.
Принцип вложенных отрезковПусть на числовой прямой задана посл-ть отрезков [a1,b1],[a2,b2],…,[an,bn],…
Причем эти отрезки удовл-ют сл. усл.:
1) каждый посл-щий вложен в предыдущий, т.е. [an+1,bn+1]Ì [an,bn], " n=1,2,…;
2) Длины отрезков ® 0 с ростом n, т.е. lim(n® ¥ )(bn-an)=0. Посл-ть с указанными св-вами наз-ют вложенными.
Теорема Любая посл-ть вложенных отрезков содержит единную т-ку с принадлежащую всем отрезкам посл-ти одновременно, с общая точка всех отрезков к которой они стягиваются.
Док-во {an}-посл-ть левых концов отрезков явл. монотонно не убывающей и ограниченной сверху числом b1.
{bn}-посл-ть правых концов монотонно не возрастающей, поэтому эти посл-ти явл. сходящимися, т.е. сущ-ют числа с1=lim(n® ¥ )an и с2=lim(n® ¥ )bn => c1=c2 => c - их общее значение. Действительно имеет предел lim(n® ¥ )(bn-an)= lim(n® ¥ )(bn)- lim(n® ¥ )(an) в силу условия 2) o= lim(n® ¥ )(bn-an)=с2-с1=> с1=с2=с
Ясно что т. с общая для всех отрезков, поскольку " n an£ c£ bn. Теперь докажем что она одна.
Допустим что $ другая с‘ к которой стягиваются все отрезки. Если взять любые не пересекающиеся отрезки с и с‘, то с одной стороны весь “хвост” посл-тей {an},{bn} должен нах-ся в окрестностях т-ки с‘‘(т.к. an и bn сходятся к с и с‘ одновременно). Противоречие док-ет т-му.
Принцип вложенных отрезковТ-ма. Любая пос-ть вложенных отрезков содержит единств. т-ку сÎ всем отрезкам посл-ти одновременно, к которой они стягиваются.
Док-во. {an} пос-ть левых концов явл. монотонно неубыв. И огран. свеху числом b1; посл-ть правых концов {bn} монотонно не возр. и ограничена снизу а1, поэтому эти посл-ти сходящ., т.е. $ числа c1=lim(n® ¥ )an и c2=lim(n® ¥ )bn.
Докажем что с1=с2 и сл-но их общая знач. может обозначить через с. Действ. имеется предел lim(n® ¥ )(bn-an)= lim(n® ¥ )bn® lim(n® ¥ )an=c2-c1=c ясно что с общая для всех отрезков поскольку для " n an£ c£ bn. Осталось доказать единство данной т-ки (от противного). Допустим есть c‘¹ c к которой стягиваются все отрезки. Если взять любые пределы окр. точек с и с‘, то с одной стороны весь “хвост” {an}, {bn}, должен нах-ся в окрестности т-ки с, а др. в с‘, т.к. an и bn® c и c‘ одновр. Противореч. док-ет т-му.
7.Ф-ции одной переменнойЕсли задано правило по которому каждому значению перем. Величины х из мн-ва Х ставится соответствие 1 значению перем. У то в этом случае говорят, что задана ф-ция 1-й переменной.
Y=f(x); x –аргумент независ. перемен., y- зав. пер.
X=Df=D(f) y={y;y=f(x),xÎ X} x1Î X1, y1=f(x1)
1) аналит. способ; 2)Табличный способ;
Рекомендуем скачать другие рефераты по теме: процесс реферат, содержание реферата курсовые работы.
Предыдущая страница реферата | 1 2 3 4 5 6 7 8 9 10 11 | Следующая страница реферата