Билеты по математическому анализу
Категория реферата: Рефераты по математике
Теги реферата: дипломная работа по менеджменту, курсовая работа 2011
Добавил(а) на сайт: Нимфа.
Предыдущая страница реферата | 2 3 4 5 6 7 8 9 10 11 12 | Следующая страница реферата
Пределы ф-ции на бесконечности. Два замечательных предела. Б/м ф-ции и их сравнения. Непрерывные ф-ции. Непрерывность. 11. Пределы ф-ции на бесконечности
Они нужны для исследования поведения ф-ции на переферии.
Опр. ф-ция f(x) имеет предел число А при x® +¥ если " {xn} которая ® к +¥ соответствующая ей последовательность {f(xn)}® A в этом случае мы пишем lim(x® +¥ )f(x)=A. Совершенно аналогично с -¥ .
Опр. Будем говорить что ф-ция f(x) имеет пределом число А при x® ¥ {f(xn)} сходится к А
Бесконечные пределы ф-цииВводятся как удобные соглашения в случае, когда конечные пределы не $ -ют.
Р-рим на премере: lim(x® o+)(1/x)
Очевидно не сущ-ет, т.к. для " {xn}® +о посл-ть {f(xn)}={1/xn}, а числ. посл-ть сводятся к +¥ .
Поэтому можно записать lim(x® o+)1/x=+¥ что говорит о неограниченных возрастаниях предела ф-ции при приближении к 0.
Аналогично с -¥ .
Более того символы +¥ и -¥ употребляются в качестве предела ф-ции в данной т-ке лишь условно и означают например, что если {xn}® x0 то {f(xn)}® ± ¥ ,¥
12. Два замечательных предела1) lim(x® 0)sin/x=1
2) Явл. обобщением известного предела о посл-ти. Справедливо сл. предельное соотношение:
lim(n® ¥ )(1+1/n)^n=e (1)
lim(n® 0)(1+x)^1/x=e (2)
t=1/x => при х® 0 t® ¥ из предела (2) => lim(x® ¥ ) (1+1/x)^x=e (3)
Док-во
1)x® +¥ n x:n=[x] => n£ x<n+1 => 1/(n+1)<1/x<1/n
Посколько при ув-нии основания и степени у показательной ф-ции, ф-ция возрастает, то можно записать новое неравенство (1/(n+1))^n£ (1+1/n)^x£ (1+1/n)^(n+1) (4)
Рассмотрим пос-ти стоящие справа и слева. Покажем что их предел число е. Заметим (х® +¥ , n® ¥ )
lim(n® ¥ )(1+1/(n+1))=lim(n® ¥ )(1+1/(n+1))^n+1-1= lim(n® ¥ )(1+1/(n+1))^n+1* lim(n® ¥ )1/(1+1/(n+1))=e
lim(n® ¥ )(1+1/n)^n+1= lim(n® ¥ )(1+1/n)^n* lim(n® ¥ )(1+1/n)=e* 1=e
2) x® -¥ . Сведем эту ситуацию к пред. Случаю путем замены переменной y=-x => y® +¥ , при x® -¥ .
lim(x® -¥ )(1+1/x)^x=lim(y® +¥ )(1-1/y)^-y= lim(y® +¥ )((y-1)/y)^y=lim(y® +¥ )(1+1/(y-1))^y=e
3) Пусть x® ¥ произвольным образом это означает при любом любом выборе посл-ти xn сходящихся к ® ¥ мы должны иметь в силу (3) соотношение lim(x® ¥ )(1+1/xn)^xn=e (5)
Условие 5~3, т.е расшифровка 3 на языке посл-ти. Выделим из посл-ти xn 2 подпосл-ти: {x‘n}® +¥ ,
{x‘‘n}® -¥ . Для каждой посл-ти по доказанному в п.1 и п.2 справедливо предельное соотношение 5 если заменить xn® x‘nx‘‘n. По т-ме о связи
Рекомендуем скачать другие рефераты по теме: процесс реферат, содержание реферата курсовые работы.
Предыдущая страница реферата | 2 3 4 5 6 7 8 9 10 11 12 | Следующая страница реферата