Дисперсионный анализ
Категория реферата: Рефераты по математике
Теги реферата: страхование реферат, диплом государственного образца
Добавил(а) на сайт: Чупахин.
Предыдущая страница реферата | 1 2 3 4 5 6 7 8 9 10 11 | Следующая страница реферата
Рефераты | Рефераты по математике | Дисперсионный анализ |
mn-1 |
Гипотеза H0 примет вид σF2 =0. В случае справедливости этой гипотезы
M(S)= M(S)= σ2.
В случае однофакторного комплекса как для модели I, так и модели II средние квадраты S2 и S2, являются несмещенными и независимыми оценками одной и той же дисперсии σ2.
Следовательно, проверка нулевой гипотезы H0 свелась к проверке существенности различия несмещенных выборочных оценок S и S дисперсии σ2.
Гипотеза H0 отвергается, если фактически вычисленное значение статистики F = S/S больше критического Fα:K1:K2, определенного на уровне значимости α при числе степеней свободы k1=m-1 и k2=mn-m, и принимается, если F < Fα:K1:K2 .
F- распределение Фишера (для x > 0) имеет следующую функцию плотности (для = 1, 2, ...; = 1, 2, ...):
где - степени свободы;
Г - гамма-функция.
Применительно к данной задаче опровержение гипотезы H0 означает наличие существенных различий в качестве изделий различных партий на рассматриваемом уровне значимости.
Для вычисления сумм квадратов Q1, Q2, Q часто бывает удобно использовать следующие формулы:
(12)
(13)
(14)
т.е. сами средние, вообще говоря, находить не обязательно.
Таким образом, процедура однофакторного дисперсионного анализа состоит в проверке гипотезы H0 о том, что имеется одна группа однородных экспериментальных данных против альтернативы о том, что таких групп больше, чем одна. Под однородностью понимается одинаковость средних значений и дисперсий в любом подмножестве данных. При этом дисперсии могут быть как известны, так и неизвестны заранее. Если имеются основания полагать, что известная или неизвестная дисперсия измерений одинакова по всей совокупности данных, то задача однофакторного дисперсионного анализа сводится к исследованию значимости различия средних в группах данных /1/.
1.3 Многофакторный дисперсионный анализ
Следует сразу же отметить, что принципиальной разницы между многофакторным и однофакторным дисперсионным анализом нет. Многофакторный анализ не меняет общую логику дисперсионного анализа, а лишь несколько усложняет ее, поскольку, кроме учета влияния на зависимую переменную каждого из факторов по отдельности, следует оценивать и их совместное действие. Таким образом, то новое, что вносит в анализ данных многофакторный дисперсионный анализ, касается в основном возможности оценить межфакторное взаимодействие. Тем не менее, по-прежнему остается возможность оценивать влияние каждого фактора в отдельности. В этом смысле процедура многофакторного дисперсионного анализа (в варианте ее компьютерного использования) несомненно более экономична, поскольку всего за один запуск решает сразу две задачи: оценивается влияние каждого из факторов и их взаимодействие /3/.
Общая схема двухфакторного эксперимента, данные которого обрабатываются дисперсионным анализом имеет вид:
Рисунок 1.1 – Схема двухфакторного эксперимента
Данные, подвергаемые многофакторному дисперсионному анализу, часто обозначают в соответствии с количеством факторов и их уровней.
Предположив, что в рассматриваемой задаче о качестве различных m партий изделия изготавливались на разных t станках и требуется выяснить, имеются ли существенные различия в качестве изделий по каждому фактору: