Комплексные числа в планиметрии
Категория реферата: Рефераты по математике
Теги реферата: капитанская дочка сочинение, отчет о прохождении практики
Добавил(а) на сайт: Бельтюков.
Предыдущая страница реферата | 15 16 17 18 19 20 21 22 23 24 25 | Следующая страница реферата
Из формулы расстояния между двумя точками получается уравнение окружности по ее центру S (s) и радиусу R :
(14)
Пусть дано уравнение
, (15)
в котором на комплексные коэффициенты а, b, с не накладывается заранее никаких условий. Требуется найти множество точек, координаты которых ему удовлетворяют. С этой целью удобно представить его в эквивалентном виде:
. (16)
Рассмотрим все возможные случаи для коэффициентов а, b, с.
1. Сравнивая уравнение (16) с уравнением (14) окружности, приходим к выводу, что уравнение (16), а значит, и уравнение (15) задают окружность тогда и только тогда, когда и ab—с - действительное число. Так как в этом случае , то с должно быть действительным числом.
Итак, уравнение
(17)
есть уравнение окружности с центром s=-b и радиусом .
2. При и с=ab уравнению (16) удовлетворяет единственная точка s=-b. В частности, этот случай имеет место при а=b=с=0. Соблюдая аналогию, говорят, что уравнением задается окружность с центром s=-b нулевого радиуса.
3. Если , , но , то - чисто мнимое число. Полагаем , тогда (16) можно записать так:
. (18)
Уравнению (18) не удовлетворяет ни одна точка плоскости, поскольку левая часть неотрицательна, а правая отрицательна при любом значении z. Говорят, что это уравнение есть уравнение окружности мнимого радиуса iR с действительным центром S, имеющим комплексную координату s=-b.
4. Когда , но , уравнение (16) противоречиво: левая часть его действительна, а правая нет. В этом случае оно не задает никакого геометрического образа (даже мнимого!).
5. Осталось рассмотреть случай, когда . Тогда из уравнения (15) вычтем уравнение , получающееся из (15) переходом к сопряженным комплексным числам. Получаем:
,
откуда
Выполняя эту подстановку в уравнение (15), приводим его к виду
. (19)
При уравнения (15) и (19) равносильны. В зависимости от того, отличен от нуля или равен нулю дискриминант
квадратного уравнения (19), оно будет определять две различные (действительные!) или две совпавшие точки. При D=0 совпавшие точки имеют комплексную координату
В частности, при c=ab как уравнение (16), так и уравнение (19) дает пару точек z1=-b и .
Итак, уравнением (15) задается либо окружность (действительная, мни мая, нулевого радиуса), либо две точки (различные или же совпавшие), либо пустое множество точек.
Рассмотрим одну замечательную пару окружностей.
Две пересекающиеся окружности называются ортогональными, если касательные к ним в их общей точке перпендикулярны. Тогда, очевидно, касательная к одной из ортогональных окружностей в их общей точке содержит центр другой окружности.
Для того чтобы окружности (A, R) и (В, r) были ортогональны, необходимо и достаточно, чтобы |AB|2=R2+r2 , или
. (20)
Если окружности заданы уравнениями
Рекомендуем скачать другие рефераты по теме: состав реферата, россия диплом.
Предыдущая страница реферата | 15 16 17 18 19 20 21 22 23 24 25 | Следующая страница реферата