Курс лекций по теории вероятностей
Категория реферата: Рефераты по математике
Теги реферата: большие рефераты, купить дипломную работу
Добавил(а) на сайт: Zherbin.
Предыдущая страница реферата | 1 2 3 4 5 6 7 8 9 10 11 | Следующая страница реферата
Геометрическое распределение вероятностей обладает интересным свойством, которое можно назвать свойством «нестарения». Пусть величина ? обозначает, скажем, время безотказной работы (измеряемое целым числом часов) некоторого устройства. Предположим, что для величины ? вероятность принять любое свое значение k в точности равна pqk-1. Справедливо следующее утверждение.
Теорема 14. Пусть P(? = k) = p qk-1. Тогда для произвольных n, k ( 0
P(? > n+k ? > n) = P(? > k)
Данному равенству можно придать следующее звучание: если известно, что устройство проработало без отказов n часов, то вероятность ему работать еще не менее k часов точно такая же, как вероятность проработать не менее k часов для нового устройства.
Можно прочесть эту формулу и так: вероятность работающему устройству проработать еще сколько-то часов не зависит от того момента, когда мы начали отсчет времени, или от того, сколько уже работает устройство.
Доказательство. По определению условной вероятности,
(4)
Последнее равенство следует из того, что событие {? > n+k} влечет событие {? > n}, так что пересечение этих событий есть {? > n+k}. Найдем для произвольного m ( 0 вероятность P(? > m).
Можно также заметить, что событие {? > m} означает, что в схеме
Бернулли первые m испытаний завершились «неудачами», а это событие имеет
вероятность как раз qm.
Возвращаясь к (4), получим
5.4 Приближение гипергеометрического распределения биномиальным
Рассмотрим урну, содержащую N шаров, из которых K шаров — белые, а оставшиеся N-K шаров — черные. Из урны наудачу (без возвращения) выбираются n шаров. Вероятность PN,K(n, k) того, что будет выбрано ровно k белых и n- k черных шаров, находится по формуле (см. определение 8 гипергеометрического распределения вероятностей):
Если число шаров в урне очень велико, то извлечение одного, двух, трех шаров почти не меняет пропорцию белых и черных шаров в урне, так что вероятности PN,K(n, k) не очень отличаются от вероятностей в процедуре выбора с возвращением
P(получить ровно k белых шаров при выборе n шаров с возвращением) =
Сформулируем нашу первую предельную теорему.
Теорема 15. Если N > ? и K > ? так, что K/N > p ( (0, 1) то для любых фиксированных n, 0 0,то, очевидно, вероятность получить любое конечное число успехов при растущем числе испытаний стремится к нулю. Необходимо чтобы вероятность успеха p = pn> 0 одновременно с ростом числа испытаний. Но от испытания к испытанию вероятность успеха меняться не может (см. определение схемы Бернулли).
Поэтому рассмотрим «схему серий»: есть
одно испытание ? с вероятностью успеха p1
два испытания ? , ? с вероятностью успеха p2
…
n испытаний ? , … , ? с вероятностью успеха pn
…
Вероятность успеха меняется не внутри одной серии испытаний, а от серии к серии, когда меняется общее число испытаний. Обозначим через vn число успехов в n-той серии испытаний.
Теорема 17 (Теорема Пуассона).
Пусть n > ? , pn> 0 так, что n pn> ? > 0. Тогда для любого k ? 0 вероятность получить k успехов в n испытаниях схемы Бернулли с вероятностью успеха pn стремится к величине
Рекомендуем скачать другие рефераты по теме: скачати реферат на тему, бесплатные рефераты без регистрации скачать.
Предыдущая страница реферата | 1 2 3 4 5 6 7 8 9 10 11 | Следующая страница реферата