Пpиближения непpеpывных пеpиодических фyнкций тpигонометpическими полиномами
Категория реферата: Рефераты по математике
Теги реферата: реферати українською, возрождение реферат
Добавил(а) на сайт: Pogrebnjak.
Предыдущая страница реферата | 13 14 15 16 17 18 19 20 21 22 23 | Следующая страница реферата
(5.4)
и
(5.5)
Предварительные замечания. Неравенства (5.2) и (5.4) предпочтительнее для больших , а (5.3)-для малых. Если , то (5.2) сильнее, чем (5.4); однако (5.4) имеет более симметричную форму и часто удобнее в приложениях.
Доказательство. Докажем (5.2). Пользуясь (2.1), (2.2) и (5.1), имеем
Докажем (5.5). Положим в (5.2) . Тогда получим :
после чего (4.5) даёт (5.5).
(5.3) следует из (5.5) в силу (2.11).
Остаётся доказать (5.4). Пусть сперва . Тогда из (5.4) следует:
Рассмотрим, наконец, случай . Из неравенства (2.7) выводим
Подставляя эту оценку в (5.3), получаем (5.4) для .
Таким образом, теорема полностью доказана.
Следствие 3.1. Пусть для некоторого натурального k и любого натурального n
(5.6)
Тогда для любого >0
(5.7)
равномерно относительно n.
Следствие 3.2. Пусть для некоторого натурального k и любого натурального n
Тогда
(5.8)
Рекомендуем скачать другие рефераты по теме: аристотель реферат, международный реферат.
Предыдущая страница реферата | 13 14 15 16 17 18 19 20 21 22 23 | Следующая страница реферата