Пpиближения непpеpывных пеpиодических фyнкций тpигонометpическими полиномами
Категория реферата: Рефераты по математике
Теги реферата: реферати українською, возрождение реферат
Добавил(а) на сайт: Pogrebnjak.
Предыдущая страница реферата | 1 2 3 4 5 6 7 8 9 10 11 | Следующая страница реферата
Доказательство. Свойство 1) вытекает из определения модуля непрерывности.
Свойство 2) вытекает из того, что при больших нам приходится рассматривать sup на более широком множестве значений h. Свойство 4) следует из того, что если мы число представим в виде h=h1+h2, и , то получим
Из неравенства (1.2) вытекает, что если то т.е.
(1.3)
Теперь докажем свойство 3). Так как функция f (x) равномерно непрерывна на [a,b], то при и, следовательно, для любых ,
при
а это и означает, что функция непрерывна.
Определение 4. Пусть функция f (x) определена на сегменте [a,b]. Тогда для любого натурального k и любых и h>0 таких, что k-й разностью функции f в точке x с шагом h называется величина
(1.4)
а при и h>0 таких, что k-й симметричной разностью - величина
(1.4’)
Лемма 1. При любых натуральных j и k справедливо равенство
(1.5)
Доказательство. Действительно, так как при любом натуральном k
то
Лемма доказана.
Лемма 2. При любых натуральных k и n верна формула:
(1.6)
Доказательство. Воспользуемся индукцией по k. При k=1 тождество (1.6) проверяется непосредственно:
.
Предполагая его справедливость при k-1 (k2), получим
Рекомендуем скачать другие рефераты по теме: аристотель реферат, международный реферат.
Предыдущая страница реферата | 1 2 3 4 5 6 7 8 9 10 11 | Следующая страница реферата