Приближённые методы решения алгебраического уравнения
Категория реферата: Рефераты по математике
Теги реферата: изложение 3, шпаргалки на телефон
Добавил(а) на сайт: Соломонов.
Предыдущая страница реферата | 1 2 3 4 5 6 7 8 9 10 11 | Следующая страница реферата
Пусть x – корень уравнения x=j (x) - лежит на отрезке [a, b]. Если на этом отрезке выполняется неравенство |j ¢(x)|<q<1, а начальное приближение x1 также выбрано на отрезке [a, b], то при любом n выполняется соотношение:
|an+ 1|<qn·|a1| (2.4)
В самом деле, из равенства (1.4) имеем:
|a2|=|j ¢(c1)|·|a1|
Но точка c1 лежит на отрезке [a, b] (рис.1.4), и потому:
|j ¢(c1)|<q
Отсюда следует, что:
|a2|<q·|a1|
Точно так же получаем, что:
|a3|=|j ¢(c1)|·|a2|<q·|a2|< q2·|a1|
и вообще:
|an+ 1|=qn·|a1|
Тем самым наше утверждение доказано.
Так само при 0<q<1 последовательность чисел q, q2, q3, … , qn, … стремится к нулю, то и погрешность an+ 1 стремится к нулю с возрастанием n. Иными словами, при указанных выше предположениях числа x1, x2, … , xn, … приближаются к числу x, причём разность |x-xn| убывает быстрее, чем qn·|a1|.
Точно так же можно доказать, что если на отрезке [a, b] выполнено неравенство:
|j ¢(x)|>1,
то процесс итераций расходится.
Особенно быстро сходится процесс последовательных приближений, если в точке x производная функции j(x) обращается в нуль. В этом случае по мере приближения к x, значение j ¢(x) стремится к нулю. Так как:
|an+ 1|=|j ¢(cn)|·|an|
то сходимость процесса ускоряется по мере приближения к точке x.
Однако то же самое можно наблюдать в методе Ньютона, при замене f(x)=0 на имеем: и её производная: в точке x: f(x)=0 - в методе Ньютона наблюдается ускорение сходимости процесса приближений.
5. Метод касательных (метод Ньютона)
Метод касательных, связанный с именем И. Ньютона, является одним из наиболее эффективных численных методов решения уравнений. Идея метода очень проста. Возьмём производную точку x0 и запишем в ней уравнение касательной к графику функции f(x):
y=f(x0)+ f ¢(x) (x-x0) (1.5)
Графики функции f(x) и её касательной близки около точки касания, поэтому естественно ожидать, что точка x1 пересечения касательной с осью Ox будет расположена недалеко от корня c (рис. 1.5)
Для определения точки имеем уравнение:
Рекомендуем скачать другие рефераты по теме: диплом вуза, стратегия реферат.
Предыдущая страница реферата | 1 2 3 4 5 6 7 8 9 10 11 | Следующая страница реферата