Рациональные уравнения и неравенства
Категория реферата: Рефераты по математике
Теги реферата: сочинения по литературе, курсовая работа на тему право
Добавил(а) на сайт: Митькин.
Предыдущая страница реферата | 5 6 7 8 9 10 11 12 13 14 15 | Следующая страница реферата
2x3 + 3x2 – x – 1 = 2x3 + x2 +2x2 + x – 2x – 1 = 2x2(x + 0,5) + 2x(x + 0,5) – 2(x+0,5) =
= (x +2)(2x2 + 2x – 2) = 0.
x1 = – 0,5; x3,4 = (– 1 ± Ö 5) / 2.
Возвратные уравнения.Уравнение вида
anxn + an – 1 xn – 1 + … +a1x + a0 = 0
называется возвратным, если его коэффициенты, стоящие на симметричных позициях, равны, то есть если
an – 1 = ak, при k = 0, 1, …, n.
Рассмотрим возвратное уравнение четвёртой степени вида
ax4 + bx3 + cx2 + bx + a = 0,
где a, b и c — некоторые числа, причём a ¹ 0. Его удобно решать с помощью следующего алгоритма:
разделить левую и правую части уравнения на x2. При этом не происходит потери решения, так как x = 0 не является корнем исходного уравнения при a ¹ 0; группировкой привести полученное уравнение к видуa(x2 + 1 / x2) + b(x + 1 / x) + c = 0;
ввести новую переменную t = x + 1 / x, тогда выполненоt2 = x2 + 2 + 1 / x2, то есть x2 + 1 / x2 = t2 – 2;
в новых переменных рассматриваемое уравнение является квадратным:
at2 + bt + c – 2a = 0;
решить его относительно t, возвратиться к исходной переменной.Для возвратных уравнений более высоких степеней верны следующие утверждения.
Возвратное уравнение чётной степени сводится к уравнению вдвое меньшей степени подстановкой
x + 1 / x = t.
Возвратное уравнение нечётной степени обязательно имеет корень x= -1 и после деления многочлена, стоящего в левой части этого уравнения, на двучлен x + 1, приводится к возвратному уравнению чётной степени.
Пример 4.21. Рассмотрим, например, возвратное уравнение пятой степени
ax5 + bx4 + cx3 + cx2 + bx + a = 0
Легко видеть, что x = – 1 является корнем этого уравнения, а потому по теореме Безу многочлен в левой части уравнения делится на x + 1. В результате такого деления получится возвратное уравнение четвёртой степени.
Довольно часто в процессе решения задач вступительных экзаменов возникают рациональные уравнения степени выше второй, которые не удаётся решить с помощью очевидной замены переменной. В этом случае попытайтесь отгадать какой-нибудь корень уравнения. Если попытка окажется успешной, то Вы воспользуетесь следствием 1 теоремы Безу и понизите на единицу степень исходного уравнения. “Кандидатов” в корни многочлена с целочисленными коэффициентами следует искать среди делителей свободного члена этого многочлена. Если же попытка угадать корни не удалась, то, возможно, Вы избрали “не тот” метод решения, и существует иной метод, реализация которого не требует решения уравнения третьей или большей степени.
Формулы Виета для многочленов высших степеней.Пусть многочлен P (x) = a0xn + a1xn – 1 + … + an
имеет n различных корней X1, X2, …, Xn. В этом случае он имеет разложение на множители вида
a0xn + a1xn – 1 + … + an = a0(x – x1)(x – x2)…(x – xn).
Рекомендуем скачать другие рефераты по теме: первый снег сочинение, научный журнал.
Предыдущая страница реферата | 5 6 7 8 9 10 11 12 13 14 15 | Следующая страница реферата