Рациональные уравнения и неравенства
Категория реферата: Рефераты по математике
Теги реферата: сочинения по литературе, курсовая работа на тему право
Добавил(а) на сайт: Митькин.
Предыдущая страница реферата | 6 7 8 9 10 11 12 13 14 15 16 | Следующая страница реферата
Разделим обе части этого равенства на a0 ¹ 0 и раскроем скобки. Получим равенство
Xn + (a1 / a0)xn – 1 + … + (an / a0) =
= xn – (x1 + x2 + … +xn)xn – 1 + (x1x2 +x1x3 + … +xn-1xn)xn – 2 +
+ … + (-1)nx1x2…xn.
Но два многочлена тождественно равны в том и только в том случае, когда коэффициенты при одинаковых степенях равны. Отсюда следует, что выполняются равенства
x1 + x2 + … + xn = -a1 / a0,
x1x2 + x1x3 + … + xn – 1xn = a2 / a0,
…………………….
x1x2× … × xn = (-1)nan / a0.
Пример 5.22. Напишем кубическое уравнение, корни которого являются квадратами корней уравнения x3 – 3x2 + 7x + 5 = 0.
Решение. Обозначим корни заданного уравнения через x1, x2 и x3. Тогда по формулам Виета имеем
s 1 = x1 + x2 +x3 = 3,
s 2 = x1x2 + x1x3 + x2x3 = 7,
s 3 = x1x2x3 = – 5.
Корни искомого уравнения обозначим буквами y1, y2, y3, а его коэффициенты — буквами b1, b2, b3, положив коэффициент при y3 равным 1. По условию должны выполняться равенства y1 = x12, y2 = x22, y3 = x32 и поэтому
b1 = – (y1 + y2 + y3) = – (x12 + x22 + x32),
b2 = y1y2 + y1y3 + y2y3 = x12x22 + x12x32 + x22x32,
b3 = – y1y2y3 = – x12x22x32 .
Но имеем
x12 + x22 + x32 = (x1 + x2 +x3)2 – 2(x1x2 + x1x3 + x2x3) = s 12 - 2s 2 = 32 – 2× 7 = – 5,
x12x22 + x12x32 + x22x32 = (x1x2 + x1x3 + x2x3)2 – 2x1x2x3(x1 + x2 +x3)= s 22 – 2s 1s 3 = = 72 – 2× 3× (– 5)= 79,
x12x22x32 = (x1x2x3)2 = s 32 = 25.
Значит, b1 = 5, b2 = 79, b3 = – 25, и потому искомое уравнение имеет вид
y3 + 5y2 + 79y – 25 = 0.
Ответ: y3 + 5y2 + 79y – 25 = 0.
Системы уравнений второй степени.
Рекомендуем скачать другие рефераты по теме: первый снег сочинение, научный журнал.
Предыдущая страница реферата | 6 7 8 9 10 11 12 13 14 15 16 | Следующая страница реферата