Устойчивость систем дифференциальных уравнений
Категория реферата: Рефераты по математике
Теги реферата: курсовые работы, скачать сочинение
Добавил(а) на сайт: Глинин.
Предыдущая страница реферата | 1 2 3 4 5 6 7 8 9 10 11 | Следующая страница реферата
Будем рассматривать систему вида (4)
где , а матричная функция P(t) удовлетворяет условию P(t + ) = P(t), >0 при всех . Такие матричные функции будем называть периодическими с периодом или -периодическими.
Теорема Флоке. Фундаментальная матрица системы (4) имеет вид
где G — -периодическая матрица, R — постоянная матрица.
Матрица В, определяемая равенством , называется матрицей монодромии. Для нее справедливо . Она определяется с помощью фундаментальной матрицы неоднозначно, но можно показать, что все матрицы монодромии подобны. Часто матрицей монодромии называют ту, которая порождается нормированной при фундаментальной матрицей , то есть .
Собственные числа матрицы монодромии называются мультипликаторами уравнения (4), а собственные числа матрицы R — характеристическими показателями. Из определения R имеем , при этом простым мультипликаторам соответствуют простые характеристические показатели, а кратным — характеристические показатели с элементарными делителями той же кратности.
Характеристические показатели определены с точностью до . Из и формулы Лиувилля следует, что .
Название мультипликатор объясняется следующей теоремой:
Теорема. Число является мультипликатором уравнения (4) тогда и только тогда, когда существует ненулевое решение этого уравнения такое, что при всех t .
Следствие 1. Линейная периодическая система (4) имеет нетривиальное решение периода тогда и только тогда, когда по меньшей мере один из ее мультипликаторов равен единице.
Следствие 2. Мультипликатору соответствует так называемое антипериодическое решение периода , т. е. . Отсюда имеем:
Таким образом, есть периодическое решение с периодом . Аналогично, если (p и q — целые, ), то периодическая система имеет периодическое решение с периодом .
Пусть , где — матрица из теоремы Флоке, — ее жорданова форма. По теореме Флоке , или , (5)
где — фундаментальная матрица, — -периодическая матрица. В структуре фундаментальной матрицы линейной системы с периодическими коэффициентами характеристические показатели играют ту же роль, что и собственные числа матрицы коэффициентов в структуре фундаментальной матрицы линейной системы с постоянными коэффициентами.
Пример. Рассмотрим дифференциальное уравнение второго порядка
, (6)
где — -периодическая вещественная скалярная функция. Мультипликаторами уравнения (6) будем называть мультипликаторы соответствующей линейной системы, т. е. системы
с матрицей . Так как , то . Мультипликаторы являются собственными числами матрицы
,
где — решение уравнения (6), удовлетворяющее начальным условиям , а — решение уравнения (6), удовлетворяющее начальным условиям . Пусть — характеристическое уравнение для определения мультипликаторов. Так как , то оно принимает вид , где .
2. Устойчивость решений систем дифференциальных уравнений.
2.1. Устойчивость по Ляпунову.
Рекомендуем скачать другие рефераты по теме: решебник по физике, работа реферат.
Предыдущая страница реферата | 1 2 3 4 5 6 7 8 9 10 11 | Следующая страница реферата