Устойчивость систем дифференциальных уравнений
Категория реферата: Рефераты по математике
Теги реферата: курсовые работы, скачать сочинение
Добавил(а) на сайт: Глинин.
Предыдущая страница реферата | 2 3 4 5 6 7 8 9 10 11 12 | Следующая страница реферата
2.4. Классификация положений равновесия системы второго порядка.
Исследуем на устойчивость положения равновесия линейной однородной системы двух уравнений с постоянными коэффициентами. Пусть , где . Как было показано в пункте 1.4, тип особой точки такой системы определяется корнями характеристического уравнения или . Его корни можно найти по формуле
.
Рассмотрим следующие случаи согласно пункту 1.4.
1) вещественны, различны и (). Параметрические уравнения траекторий: . Положение равновесия называется узел. Если корни положительны (), то решения будут неограниченно возрастать, и особая точка — неустойчивый узел.
Если отрицательны (), то решения с ростом времени будут неограниченно уменьшаться, то есть положение равновесия будет асимптотически устойчивым. Особая точка — устойчивый узел.
2) вещественны и (). В этом случае одна из траекторий всегда будет неограниченно возрастать, а другая неограниченно уменьшаться. Таким образом, седло всегда неустойчиво.
3) комплексно-сопряженные, но не чисто мнимые (). Решение в полярных координатах запишется в виде , где . Если (), то спирали будут раскручиваться от особой точки, и фокус будет неустойчивым.
Если (), то особая точка — устойчивый фокус, причем устойчивость асимптотическая.
4) (). Особая точка — центр, траектории — окружности, то есть положение равновесия является устойчивым, но не асимптотически.
5) . Если , то получаем неустойчивый узел, либо вырожденный, либо дикритический. Если , положение равновесия будет асимптотически устойчивым.
6) Один из корней равен нулю (например ). Траекториями являются прямые, параллельные друг другу. Если , то получаем прямую неустойчивых особых точек. Если , то прямая будет содержать устойчивые особые точки.
7) Оба корня равны нулю. Тогда . Особая точка неустойчива.
Пример. Рассмотрим систему . Положение равновесия находится из уравнения , или , откуда . Следовательно, положение равновесия — неустойчивый узел. Жорданова форма матрицы А имеет вид:
.
Найдем координаты преобразования , приводящего матрицу А к жордановой форме, то есть переводящего систему к виду . Дифференцируя эти уравнения и подставляя в исходную систему, получаем:
откуда с учетом , — произвольное, , — произвольное. Получаем преобразование . Определим новое положение осей:
Решение системы запишется в виде , а исходной системы отсюда . Схематическое изображение траекторий:
Рекомендуем скачать другие рефераты по теме: решебник по физике, работа реферат.
Предыдущая страница реферата | 2 3 4 5 6 7 8 9 10 11 12 | Следующая страница реферата