Модель портального манипулятора
Категория реферата: Рефераты по науке и технике
Теги реферата: доклад на тему, педагогические рефераты
Добавил(а) на сайт: Кияк.
Предыдущая страница реферата | 1 2 3 4 5 6 7 8 9 10 11 | Следующая страница реферата
В (2.4) для упрощения приняты следующие обозначения:
, , , , , .
Для составления дифференциальных уравнений свободных колебаний в форме уравнений Лагранжа второго рода, выразим потенциальную энергию через обобщенные координаты. Рассмотрим равновесие системы, на которую действуют силы …,. Потенциальная энергия в состоянии устойчивого равновесия имеет минимум, равный нулю, а при вызванном действием сил отклонении от него выражается квадратичной формой вида (2.4).
Элементарная работа всех сил действующих на систему, по принципу возможных перемещений должна быть равна нулю:
. |
(2.5) |
Замечая, что
а также приравнивая к нулю коэффициенты при независимых вариациях , и , получаем три уравнения:
, |
(2.6) |
Здесь , и - обобщенные силы для системы сил …,, уравновешивающих потенциальные силы, возникающие при отклонении системы из положения равновесия . Заменяя в (2.6) производные потенциальной энергии их выражениями согласно (2.4), получим систему уравнений, определяющих значение координат , и в положении равновесия:
, |
(2.7) |
причем , и .
Решение системы (2.7) имеет вид:
, |
(2.8) |
где
(2.9) |
.
На систему действуют обобщенные силы, которыми являются инерционные силы и силы сопротивления движению. Обычно в сложных системах в целях упрощения [4, 5] силу сопротивления принимают пропорциональной первой степени скорости движения. С целью упрощения условимся, что угол мал и координаты массы m можно записать как . Поэтому на основании кинетостатики можем записать:
, |
(2.10) |
где - обобщенная сила, - коэффициент сопротивления пропорциональный первой степени скорости движения массы m. Так как масса собственно консоли манипулятора МРЛ-901П меньше массы закрепленных на ней рабочих головок, захватов и деталей, для упрощения примем условие, что точка исследования колебаний (практически - рабочий орган манипулятора) совпадает с точкой приложения сосредоточенной массы m.
Сила действует на все звенья манипулятора следовательно:
(2.11) |
Коэффициенты в (2.7) будем определять из того, что согласно (2.11) звенья можно рассматривать независимо друг от друга. Положим сначала, что действует только по координате , затем только по координате и наконец только по координате , тогда в выражение (2.7) можно переписать:
, |
(2.12) |
таким образом , используя (2.9) находим:
(2.13) |
Коэффициенты , и определяют податливость звеньев манипулятора по координатам , и соответственно. Выражая податливость звеньев через их жесткость, запишем:
, |
(2.14) |
где , и жесткости звеньев по координатам , и соответственно.
Подставляя (2.14) , (2.11) и (2.10) в (2.8) получим:
(2.15) |
Для решения этой системы нужно выразить скорость и ускорение массы m через их составляющие:
. |
(2.16) |
Поскольку в манипуляторе суммарную жесткость удобно экспериментально определять, прикладывая соответствующее усилие к его рабочему органу, и так как в конечном итоге необходимо определить положение массы m, координаты которой выражаются как , то для этого достаточно сложить уравнения в выражении (2.15):
(2.17) |
или:
Предыдущая страница реферата | 1 2 3 4 5 6 7 8 9 10 11 | Следующая страница реферата Поделитесь этой записью или добавьте в закладкиКатегории: |