Математический анализ
Категория реферата: Рефераты по математике
Теги реферата: понятие культуры, ответы
Добавил(а) на сайт: Труфанов.
Предыдущая страница реферата | 1 2 3 4 5 6 7 8
Необходимо найти min и max z(x) на границе. Для этого надо найти экстремумы внутри области (достаточно найти точки, где возможны экстремумы и вычислить значение функции в этих точках).
Леция №4
Определение интеграла по фигуре.
Пусть дана фигура G , р - текущая точка на фигуре.
f(p) - заданная на фигуре G
Выполним след. операции:
1.Разобьем G на куски: DG1, DG2,…, DGn, - меры кусков.
2.Внутри каждого куска выберем по 1 точке р1, р2, р3…
3.Вычисляем значение функции в выбранных точках
4.Составляем сумму произведений
f(p1)* DG1+ f(p2)* DG2+… +f(pn)* DGn=(n/i=1)åf(pi)*DGi -
эта сумма называется интегральной суммой функции f(p) по фигуре G при разбиениии n
Опр. Интегралом по фигуре G функции f(p) называется предел интегральных сумм этой функции, когда n®0
òGf(p)dG=Lim(n®¥)*(n/i=1)åf(Pi)*DGi
Если этот предел существует и независит от способов разбиения при условии, что диаметры кусков при этом стремятся к нулю.
Диаметром куска называется его максимальный линейный размер.
Max dim DG ®0
Cвойства интеграла по фигуре.
1.Итеграл по фигуре от единичной функции равен мере фигуры.
òGdG=G - мера фигуры
Док-во: по определению
òGdG=Lim(n®¥)*(n/i=1)å1*DG=G - как сумма мер всех кусков.
¥¥¥¥¥¥¥¥¥¥òòòòòòòòåååååå
Скачали данный реферат: Ледовской, Levin, Мальвина, Редругин, Белозерцев, Mitrodora.
Последние просмотренные рефераты на тему: диплом купить, научные статьи, скачать реферат бесплатно без регистрации, рефераты помощь.
Предыдущая страница реферата | 1 2 3 4 5 6 7 8