
Морфологический анализ цветных (спектрозональных) изображений
Категория реферата: Рефераты по математике
Теги реферата: закон реферат, реферат молодежь
Добавил(а) на сайт: Свирид.
Предыдущая страница реферата | 1 2 3 4 5 6 7 8 9 10 11 | Следующая страница реферата
, i=1,...,N,(7)
причем для изображения (5) цвета j
(i), i=1,.…..,N, считаются попарно различными, а функции g(i), i=1,.…..,N, - удовлетворяющими условиям i=1,.…..,N.
Нетрудно заметить, что в выражениях (5),(6) и (7) без потери общности можно принять условие нормировки , позволяющее упростить выражения (6) и (7) для распределений яркости и цвета. С учетом нормировки распределение яркости на Ai задается функцией
а цвет на Ai равен
(7*)
Форму изображения (5) определим как класс всех изображений
(8)
,
каждое из которых, как и изображение (5), имеет постоянный цвет в пределах каждого Ai, i=1,...,N. Форма таких изображений не сложнее, чем форма f() (5), поскольку в изображении на некоторых различных подмножествах Ai, i=1,...,N, могут совпадать значения цвета, которые непременрно различны в изображении f() (5). Совпадение цвета
на различных подмножествах Ai, i=1,...,N ведет к упрощению формы изображения
по сравнению с формой f() (5). Все изображения
, имеющие различный цвет на различных Ai, i=1,...,N,считаются изоморфными fи между собой), форма остальных не сложнее, чем форма f. Если
, то, очевидно,
.
Если в (8) яркость , то цвет
на Ai считается произвольным (постоянным), если же
в точках некоторого подмножества
, то цвет
на Ai считается равным цвету
на
, i=1,...,N.
Цвет изображения (8) может не совпадать с цветом (5). Если же по условию задачи все изображения , форма которых не сложнее, чем форма
, должны иметь на Ai, i=1,...,N, тот же цвет, что и у
то следует потребовать, чтобы
, в то время, как яркости
остаются произвольными (если
, то цвет
на Ai определяется равным цвету f на Ai, i=1,...,N).
Нетрудно определить форму любого, не обязательно мозаичного, изображения fв том случае, когда допустимы произвольные изменения яркости при неизменном цвете j
(x) в каждой точке
. Множество, содержащее все такие изображения
(9)
назовем формой в широком смысле изображения , у которого f(x)¹
0, m
-почти для всех
, [ср. 2].
является линейным подпространством
, содержащем любую форму
,(10)
в которой включение определяет допустимые значения яркости. В частности, если
означает, что яркость неотрицательна:
, то
- выпуклый замкнутый конус в
, принадлежащий
.
Более удобное описание формы изображения может быть получено на основе методов аппроксимации цветных изображений, в которых форма определяется как оператор наилучшего приближения. В следующем параграфе дано представление формы изображения в виде оператора наилучшего приближения.
5. Задачи аппроксимации цветных изображений. Форма как оператор наилучшего приближения.Рассмотрим вначале задачи приближения кусочно-постоянными (мозаичными) изображениями. Решение этих задач позволит построить форму изображения в том случае, когда считается, что
для любого преобразования
, действующего на изображение
как на вектор
в каждой точке
и оставляющего
элементом
, т.е. изображением. Форма в широком смысле
определяется как оператор
наилучшего приближения изображения
изображениями
где - класс преобразований
, такой, что
. Иначе можно считать, что
(10*)
а - оператор наилучшего приближения элементами множества
, форма которых не сложнее, чем форма
. Характеристическим для
является тот факт, что, если f(x)=f(y), то для любого
.

Задано разбиение , требуется определить яркость и цвет наилучшего приближения на каждом
. Рассмотрим задачу наилучшего приближения в
цветного изображения f(×
) (2) изображениями (4), в которых считается заданным разбиение
поля зрения X и требуется определить
из условия
(11)
Теорема 1. Пусть . Тогда решение задачи (11) имеет вид
Рекомендуем скачать другие рефераты по теме: оформление доклада титульный лист, понятие культуры.
Предыдущая страница реферата | 1 2 3 4 5 6 7 8 9 10 11 | Следующая страница реферата