Рефераты | Рефераты по математике | О раскрытии скобок, об Эйлере, Гауссе, Макдональде и об упущенных возможностях | страница реферата 8 | Большая Энциклопедия Рефератов от А до Я
Большая Энциклопедия Рефератов от А до Я
  • Рефераты, курсовые, шпаргалки, сочинения, изложения
  • Дипломы, диссертации, решебники, рассказы, тезисы
  • Конспекты, отчеты, доклады, контрольные работы

  • a2

    ak

    Мы видим, что представлений числа n в виде a1 + 2a2 + ... + kak столько же, сколько есть его представлений в виде суммы натуральных слагаемых, то есть p(n). Таким образом, коэффициент при xn в нашем произведении равен p(n), то есть 1/φ(x) = π(x). Теорема доказана.

    Положив для удобства p(0) = 1, напишем

    (1 – x – x2 + x5 + x7 + ...)(1 + p(1)x + p(2)x2 + ...) = 1

    (коэффициенты в первом множителе пишутся согласно тождеству Эйлера!). Раскроем скобки и приравняем нулю коэффициенты при x, x2, x3, ..., xn в левой части. Получим:

    p(1) – p(0) = 0;

    p(2) – p(1) – p(0) = 0;

    p(3) – p(2) – p(1) = 0;

    . . . . . . . . . . . . . . . . . . . . . .

    p(n) – p(n–1) – p(n–2) + p(n–5) + p(n–7) – ... = 0

    (в левой части последней формулы нужно писать слагаемые до тех пор, пока аргумент у p остаётся неотрицательным). Итак,

    p(n) = p(n–1) + p(n–2) – p(n–5) – p(n–7) + ... .

    Эта формула позволяет быстро составить довольно длинную таблицу чисел p(n). Вот практический совет, как это сделать. Возьмите лист клетчатой бумаги – лучше всего двойной тетрадный лист. Отрежьте вдоль его длинной стороны полоску шириной 3–4 клетки. Положите эту полоску перед собой вертикально и у левого среза в нижней клетке поставьте какой-нибудь знак, скажем звёздочку. Затем, двигаясь вверх, поставьте в первой клетке +, во второй +, в пятой –, в седьмой –, в двенадцатой +, в пятнадцатой + и т.д., насколько хватит длины полоски (рис. 1). Оставшуюся часть листа также положите перед собой вертикально и, отступя 10–15 клеток от её левого среза, проведите на ней вертикальную черту – сверху донизу. В клетки, прилегающие к черте слева, двигаясь сверху вниз, впишите уже известные вам числа p(n), начиная с p(0): 1, 1, 2, 3, 5, 7. Чтобы найти следующее значение, приложите отрезанную полоску справа к вертикальной черте так, чтобы звёздочка оказалась против первой пустой клетки. Теперь из суммы чисел, стоящих против плюсов, вычтите сумму чисел, стоящих против минусов. Что получится – впишите в клетку против звездочки: это – следующее значение функции p(n). Опустите полоску на одну клетку вниз и повторите то же самое. И так далее. Через несколько минут вы получите колонку чисел p(n) высотой в ваш лист.

     

     Рис. 1

    Рис. 2

    Пользуясь этим рецептом, я нашел числа p(n) для n ≤ 50. На это потребовалось – честно, по часам – 17 минут. (Несколько первых шагов вычисления я привожу на рисунке 2; красные числа – это новые значения p(n).) В частности,

    p(50) = 204226.

    Представьте себе, сколько потребовалось бы времени для нахождения этого числа кустарным способом!

    3. Доказательство тождества Эйлера

    Раскроем скобки в нашем произведении

    (1 – x)(1 – x2)(1 – x3)(1 – x4)... .

    Получится сумма (бесконечная), в которой xn встретится столько раз, сколькими способами n представляется в виде суммы возрастающей последовательности натуральных чисел: n = n1 + n2 + ... + nk , n1 < n2 < ... < nk ; при этом знак при xn будет +, если k чётно, и –, если k нечётно. Ниже в этом параграфе наборы (n1 ..., nk ) с n1 + ... + nk = n и n1 < ... < nk называются просто «разбиениями».

    Мы будем различать разбиения трёх типов. Обозначим для разбиения (n1 , ..., nk ) через s наибольшее число такое, что nk – nk–s+1 = s – 1, то есть s чисел nk–s+1, ..., nk идут подряд (очевидно, s ≤ k). Например, для разбиения 12=2+4+6 s = 1, для разбиения 12=1+5+6 s = 2, для разбиения 33=4+5+8+9 s = 3. Мы скажем, что разбиение (n1 , ..., nk ) принадлежит


    Рекомендуем скачать другие рефераты по теме: заключение реферата, защита дипломной работы.



    Предыдущая страница реферата | 3  4  5  6  7  8  9  10  11  12  13 |




    Поделитесь этой записью или добавьте в закладки

       




    Категории:



    Разделы сайта




    •