Производная и ее применение в алгебре, геометрии, физике
Категория реферата: Рефераты по математике
Теги реферата: новейшие рефераты, ресурсы реферат
Добавил(а) на сайт: Янборисов.
Предыдущая страница реферата | 10 11 12 13 14 15 16 17 18 19 20 | Следующая страница реферата
Нахождение экстремума при помощи второй производной
1°. Лемма. Если при х = с производная положительна (или отрицательна), то в достаточно малой окрестности точки х = с приращение функции и приращение аргумента в точке с имеют одинаковые (или разные) знаки.
lim (∆y/∆x)>0. ∆x→0 |
Предположим, что при стремлении ∆x к нулю приращения ∆y и ∆x имеют разные знаки. Тогда отношение ∆y/∆x отрицательно и его предел
f '(c) ≤ 0,
что противоречит условию.
Так же доказывается и вторая часть леммы.
2°. Теорема. Если при х = с первая производная функции f(x) равна нулю, f '(c)=0, а вторая производная положительна, f "(c)>0, то в точке х = с функция f(x) имеет минимум;
если же вторая производная отрицательна, f "(с) < 0, то в точке х = с функция f(x) имеет максимум.
f ’’(c) = lim ((f’(c + ∆x)-f ’(c))/∆x)>0. ∆x→0 |
Согласно лемме, если при х = с производная (в данном случае вторая) положительна, то в достаточно малой окрестности 2δ точки с приращение функции (в данном случае первой производной) имеет тот же знак, что и приращение аргумента. Слева от точки с приращение аргумента отрицательно, значит, и приращение функции отрицательно, т.е.
f '(c — ∆x)—f(c)<0, (0 < ∆x < δ).
Отсюда:
f '(c-∆x)<f '(c) = 0. (1).
Справа от точки с приращение аргумента положительно, т. е.
f '(c +∆x)-f '(c)>0.
Отсюда:
f '(c + ∆x)>f '(c) = 0. (2)
Получили: первая производная функции f(x) слева от точки с отрицательна (1), а справа положительна (2). Значит, в точке х = с функция f(x) имеет минимум, как это и требовалось доказать.
Так же доказывается теорема и в случае f "(с)<0.
3°. Доказанная теорема определяет второй способ нахождения экстремума. Он отличается от первого тем, что третья и четвертая операции первого способа заменяются: а) нахождением второй производной и б) определением ее знака в стационарной точке. Результат исследования можно выразить так:
Если знак числа f "(с), Рекомендуем скачать другие рефераты по теме: греция реферат, республика реферат. Предыдущая страница реферата | 10 11 12 13 14 15 16 17 18 19 20 | Следующая страница реферата Поделитесь этой записью или добавьте в закладкиКатегории: |