Сопряжённые числа
Категория реферата: Рефераты по математике
Теги реферата: шпоры по истории россии, реферат государственный
Добавил(а) на сайт: Устимович.
Предыдущая страница реферата | 11 12 13 14 15 16 17 18 19 20 21 | Следующая страница реферата
Рефераты | Рефераты по математике | Сопряжённые числа |
|
tn qn |
= |
1 √6 |
. |
Мы говорили выше, что сопряжённые числа a ± b√d возникают часто как корни квадратного уравнения с целыми коэффициентами. В связи с последней задачей возникает такое желание:
9. Написать уравнение с целыми коэффициентами, один из корней которого равен 1 + √2 + √3.
Возникает подозрение, что вместе с этим числом λ1 уравнению с целыми коэффициентами удовлетворяют и сопряжённые, которые в решении предыдущей задачи мы обозначили λ2, λ3, λ4. Нужное уравнение можно записать так:
(x – λ1)(x – λ2)(x – λ3)(x – λ4) = 0;
то есть
(x – 1 – √2 – √3)(x – 1 + √2 – √3)×
(x – 1 – √2 + √3)(x – 1 + √2 + √3) = 0;
после преобразований получаем
((x – 1)2 – 5 – 2√6)·((x – 1)2 – 5 + 2√6) = 0,
(x2 – 2x – 4)2 – 24 = 0,
x4 – 4x3 – 4x2 – 16x – 8 = 0.
Именно такое уравнение получилось бы в качестве характеристического, если бы мы применили упомянутую мелким шрифтом в конце предыдущего раздела общую теорию к исследованию линейного преобразования
(qn; rn; sn; tn) → (qn+1; rn+1; sn+1; tn+1)
в предыдущей задаче. Заметим, кроме того, что мы на самом деле получили уравнение наименьшей степени (с целыми коэффициентами) с корнем λ1 = 1 + √2 + √3. Попробуйте это доказать!
Алгебраическое послесловие
Мы разобрали несколько примеров, в которых затрагивались пограничные вопросы алгебры, математического анализа и теории чисел. (Каждому направлению, которое мы наметили, можно было бы посвятить более подробную статью в «Кванте»!) В заключение покажем ещё, как можно смотреть на основных героев статьи — «сопряжённые числа» — с чисто алгебраической точки зрения.