Спектр оператора. Применение нестандартного анализа для исследования резольвенты и спектра оператора
Категория реферата: Рефераты по математике
Теги реферата: здоровье реферат, реферат горы
Добавил(а) на сайт: Kanash.
Предыдущая страница реферата | 1 2 3 4 5 6 7 8 9 10 11 | Следующая страница реферата
Теорема: Пусть ограниченный линейный оператор А0, отображающий банахово пространство Е на банахово пространство Е1, обладает ограниченным обратным и пусть – такой ограниченный линейный оператор, отображающий Е в Е1, что . Тогда оператор А= отображает Е на Е1 и обладает ограниченным обратным.
Теорема: Пусть Е – банахово пространство, I – тождественный оператор в Е, а А – такой ограниченный линейный оператор, отображающий Е в себя, что норма . Тогда оператор существует, ограничен и представляется в виде
.
Резольвента линейного оператора
Определение и примеры резольвенты оператора
Рассмотрим оператор А, действующий в (комплексном) линейном топологическом пространстве Е, и уравнение
Ах=
Решения этого уравнения зависят от вида оператора . Имеется три возможности:
уравнение Ах= имеет ненулевое решение, т.е. есть собственное значение для А; оператор при этом не существует;
существует ограниченный оператор , т.е. есть регулярная точка;
оператор существует, т.е. уравнение Ах= имеет лишь нулевое решение, но этот оператор не ограничен.
Введём следующую терминологию. Оператор называется резольвентой оператора А. Число мы назовём регулярным для оператора А, действующего в линейном топологическом пространстве Е, если оператор определён на всём Е и непрерывен, множество таких будем называть резольвентным множеством и обозначать . Совокупность всех остальных значений называется спектром оператора А, будем обозначать . Спектру принадлежат все собственные значения оператора А, так как если х=0 при некотором , то не существует. Их совокупность называется точечным спектром. Остальная часть спектра, т.е. совокупность тех , для которых существует, но не непрерывен, называется непрерывным спектром. Итак, каждое значение является для оператора А или регулярным, или собственным значением, или точкой непрерывного спектра. Возможность наличия у оператора непрерывного спектра – существенное отличие теории операторов в бесконечномерном пространстве от конечномерного случая.
В конечномерном же случае имеется лишь две первые возможности. Причём, называется собственным значением оператора, если данное уравнение имеет ненулевое решение. Совокупность всех собственных значений образуют спектр оператора, а все остальные значения называются – регулярными. Иначе, говоря , есть регулярная точка, если оператор обратим.
Рассмотрим насколько примеров резольвент операторов.
Пример 1: Возьмём оператор, переводящий конечномерное пространство в конечномерное, как было сказано выше, его можно задать матрицей коэффициентов:
, тогда
С помощью нехитрых преобразований находим обратную матрицу, тем самым резольвенту этого оператора:
,
здесь хорошо видно, что оператор, заданный этой матрицей не существует при =1, то есть это собственное значение оператора А.
Пример 2: Рассмотрим линейный оператор, отображающий пространство непрерывных функций на отрезке [a,b] на себя. Пусть это будет оператор умножения на функцию g(x). Тогда резольвента этого оператора запишется в следующем виде: , такой оператор непрерывен, если функция g(x) не принимает значение на отрезке [a,b], в противном случае будет являться собственным значением. То есть спектр этого оператора состоит из значений функции g(x) на отрезке [a,b]. Причём этот оператор имеет лишь непрерывный спектр, так как резольвента при существует, но не непрерывна. Точечного спектра оператор не имеет.
Пример 3: Рассмотрим оператор дифференцирования на множестве дифференцируемых функций. А: (для краткости будем писать вместо f(x) просто f). Рассмотрим резольвенту этого оператора: , то есть мы должны найти обратный оператор к оператору: , для чего надо решить дифференциальное уравнение относительно . Решим уравнение методом Бернулли:
;
;
; ; ; ; , откуда ,
Рекомендуем скачать другие рефераты по теме: правовые рефераты, задачи с ответами.
Предыдущая страница реферата | 1 2 3 4 5 6 7 8 9 10 11 | Следующая страница реферата