Спектр оператора. Применение нестандартного анализа для исследования резольвенты и спектра оператора
Категория реферата: Рефераты по математике
Теги реферата: здоровье реферат, реферат горы
Добавил(а) на сайт: Kanash.
Предыдущая страница реферата | 1 2 3 4 5 6 7 8 9 10 11 | Следующая страница реферата
Так как <1, то .Пространство Е полно, так что из сходимости ряда вытекает, что сумма ряда представляет собой ограниченный линейный оператор. Для любого n имеем
;
переходя к пределу при и учитывая, что , получаем
,
что и означает, что .
Доказано.
Теорема 7. Если А – ограниченный линейный оператор в банаховом пространстве и >, то – регулярная точка.
Доказательство:
Так как, очевидно, что ,
то
При < этот ряд сходится (см. теорему 5), т.е. оператор имеет ограниченный обратный. Иначе говоря, спектр оператора А содержится в круге радиуса с центром в нуле.
Доказано.
Из выше доказанной теоремы вытекает разложение резольвенты в ряд Лорана на бесконечности
При < этот ряд сходится. Но – это наименьшее из чисел С, удовлетворяющих неравенству:
Аf=Cf, если С – собственное значение, то и , то для наибольшего по модулю из собственных значений неравенство будет иметь место, с другой стороны, это число будет наименьшим. Следовательно, ряд будет сходиться при <(А), где (А) – наибольший модуль собственных значений оператора А. Величина (А) называется спектральным радиусом оператора А.
Теорема 8: (А)=.
Для доказательства воспользуемся теоремой Коши-Адамара, сформулируем её. Теорема Коши-Адамара: Положим , . Рассмотрим степенной ряд . Тогда он сходится всюду в круге и расходится всюду вне этого круга.
Доказательство:
Рассмотрим разложение резольвенты в ряд Лорана как степенной ряд:
.
По теореме Коши-Адамара его радиус сходимости равен числу
, но с другой стороны радиус сходимости ряда Лорана резольвенты есть спектральный радиус.
Рекомендуем скачать другие рефераты по теме: правовые рефераты, задачи с ответами.
Предыдущая страница реферата | 1 2 3 4 5 6 7 8 9 10 11 | Следующая страница реферата