Теория вероятности и математическая статистика
Категория реферата: Рефераты по математике
Теги реферата: банк рефератов, шпаргалки по педагогике
Добавил(а) на сайт: Долженко.
Предыдущая страница реферата | 22 23 24 25 26 27 28 29 30 31 32 | Следующая страница реферата
Очевидно, что событие A является пересечением событий Ai вида:
Т.к. каждое AiÎ s -алгебре, то и AÌ s -алгебре. Следовательно, существует вероятность наступления события A и существует числовая скалярная функция m действительных аргументов, которая определена для всех значений своих аргументов и численно равна вероятности наступления события A.
F(x1, x2, ...,xm)=P(A)
Это m-мерная функция распределения m-мерной случайной величены.
Свойства многомерного распределения:
Значение функции при значении хотя бы одного ее аргумента равного -¥ , равно 0, как вероятность невозможного события.
Значение функции, при всех значениях ее аргументов равных +¥ , равно 1, как вероятность достоверного события.
Функция не убывает по любой совокупности ее аргументов.
Функция непрерывна почти всюду (для инженерной практики это означает, что на конечном, либо счетном множестве аргументов она может иметь скачки 1-го рода).
Рассмотрим арифметическое пространство и зададим полуинтервалы вида:
Доказать самим, что P(B) существует, и образ этого множества принадлежит s -алгебре по w .
Можно доказать, что:
Т.о. многомерная функция распределения позволяет в m-мерном арифметическом пространстве задать счетно-аддитивную меру - функцию на поле, порожденному всеми m-мерными полуинтервалами объема (" i, ai¹ bi). Тогда построим минимальную s -алгебру на этом поле, которая называется борелевским полем (алгеброй) в m-мерном арифметическом пространстве. Любая скалярная функция m-аргументов удовлетворяет всем свойствам, приведенным для m-мерной функции распределения и однозначно задает вероятностное пространство вида:
Таким образом, для инженерного исследования задача свелась к следующему: пространство элементарных событий - это m-мерное арифметическое пространство. По результатам статистических испытаний нужно оценить m-мерную функцию распределения F(x1, x2, ...,xm). Рассмотрим числовую скалярную функцию m действительных аргументов. g(x1, x2, ...,xm). Функция g(x1, x2, ...,xm) называется борелевской, если для любого BÌ b в одномерном арифметическом пространстве соответствующая . Тогда справедлива теорема, доказательство которой полностью повторяет доказательство в одномерном случае. Скалярная функция - является измеримой скалярной функцией - случайной величиной.
Двумерные случайные величины.
Рассмотрим испытание, результатом которого является появление двух чисел из некоторого конечного либо счетного множества пар чисел. Это испытание физически может быть одним испытанием (мгновенное измерение прибором величены тока и напряжения в сети), а также может быть композицией двух испытаний, каждое из которых порождает одномерную дискретную величину. Условно двумерная дискретная случайная величина обозначается как XY, либо любые две буквы латинского алфавита, либо для: X:{x1, x2, ...,xs}, Y:{y1, y2, ...,yn}, проводя испытание над двумерной случайной величиной находят одно из чисел из X либо из Y. А вероятностное пространство двумерной случайной величены формально строится так:
Двумерной случайной величиной называется система из двух одномерных случайных величин X, Y, где как X, так и Y являются дискретными случайными величинами. В пространстве элементарных событий дискретной случайной величены XY определим сложное событие A: В результате испытания над двумерной случайной величиной XY, случайная величина X приняла значение xi, случайная величина Y - любое значение.
Вводим сложное событие B: В результате испытания над двумерной случайной величиной XY, случайная величина Y приняла значение yj.
Найдем условную вероятность:
Аналогично:
Покажем что сумма условных вероятностей: ;
Условным математическим ожиданием является выражение:
;
Условной дисперсией называется выражение:
;
.
Условное мат. ожидание и дисперсия отличаются от безусловной только тем, что в их определении подставляется условная вероятность вместо безусловной.
Условное мат. ожидание случайной величены, при условии, что другая случайная величена приняла заданное значение определяет число-точку, относительно которой группируются результаты конкретных испытаний над одной случайной величиной, при условии, что в этом испытании (над двумерной случайной величиной XY) вторая случайная величена приняла заданное фиксированное значение.
Условная дисперсия определяет степень концентрации результатов конкретных испытаний над одной случайной величиной относительно условного мат. ожидания.
При решении практических задач условное мат ожидание и условная дисперсия обычно используются в следующем случае: проводят испытание над X и Y, исследователь имеет возможность измерять результаты испытания над одной случайной величиной, измерение другой недоступно. Если условные дисперсии малы, то в качестве неизвестного значения не измеряемой случайной величены, которую она приняла в результате испытания, можно брать мат. ожидание.
Двумерные непрерывные случайные величины.
Двумерная случайная величина называется непрерывной случайной величиной, если пространством ее элементарных событий является плоскость, либо область плоскости, либо область конечной ненулевой плоскости. Очевидно что X и Y являются одномерными непрерывными случайными величинами.
Рекомендуем скачать другие рефераты по теме: изложение по русскому 6 класс, реферат анализ.
Предыдущая страница реферата | 22 23 24 25 26 27 28 29 30 31 32 | Следующая страница реферата