Разбиение чисел
Категория реферата: Рефераты по математике
Теги реферата: продукт реферат, конспект
Добавил(а) на сайт: Pechenikov.
Предыдущая страница реферата | 1 2 3 4 5 6 7 8 9 10 11 | Следующая страница реферата
(1 – x)(1 – x3)(1 – x5) ...
|
. |
(2)
Значит, производящие функции последовательностей d(n) и l(n) совпадают! Мы доказали теорему Эйлера: d(n) = l(n). Это доказательство хорошо иллюстрирует силу метода производящих функций.
Но вернёмся к вычислению p(n). Изучая производящую функцию последовательности p(n), Эйлер сосредоточил внимание на произведении (1–x)(1–x2)(1–x3)..., т.е. на знаменателе правой части формулы (1). Раскрывая в нём скобки, Эйлер получил удивительный результат:
(1 – x)(1 – x2)(1 – x3) ... = 1 – x – x2 + x5 + x7 – x12 – x15 + x22 + x26 – x35 – x40 + ...
Показатели в правой части — пятиугольные числа, т.е. числа вида (3q2 ± q)/2, а знаки при соответствующих мономах равны (–1)q. Исходя из этого наблюдения, Эйлер предположил, что должна быть верна
Пентагональная теорема:
∞ |
∞ |
||
∏ |
(1 – xk) = |
∑ |
(–1)qx(3q²+q)/2. |
k=1 |
q=–∞ |
Пентагональная теорема оказалась «крепким орешком» — Эйлер сумел доказать её лишь 14 лет спустя. Эта теорема позволяет сравнительно просто вычислять значения p(n). Вот как это делается.
Умножим обе части равенства (1) на
∞ |
|
∏ |
(1 – xk) |
k=1 |
и воспользуемся пентагональной теоремой:
( p(0) + p(1) x + p(2) x2 + ...)(1 – x – x2 + x5 + x7 – x12 – x15 + ...) = 1.
Раскрыв скобки в левой части, получим, что коэффициенты при ненулевых степенях x равны нулю. Отсюда мы получаем замечательную формулу Эйлера, позволяющую последовательно находить числа p(n):