Рефераты | Рефераты по математике | Разбиение чисел | страница реферата 3 | Большая Энциклопедия Рефератов от А до Я
Большая Энциклопедия Рефератов от А до Я
  • Рефераты, курсовые, шпаргалки, сочинения, изложения
  • Дипломы, диссертации, решебники, рассказы, тезисы
  • Конспекты, отчеты, доклады, контрольные работы

  •  .

    (2)

    Значит, производящие функции последовательностей d(n) и l(n) совпадают! Мы доказали теорему Эйлера: d(n) = l(n). Это доказательство хорошо иллюстрирует силу метода производящих функций.

    Но вернёмся к вычислению p(n). Изучая производящую функцию последовательности p(n), Эйлер сосредоточил внимание на произведении (1–x)(1–x2)(1–x3)..., т.е. на знаменателе правой части формулы (1). Раскрывая в нём скобки, Эйлер получил удивительный результат:

    (1 – x)(1 – x2)(1 – x3) ... = 1 – x – x2 + x5 + x7 – x12 – x15 + x22 + x26 – x35 – x40 + ...

    Показатели в правой части — пятиугольные числа, т.е. числа вида (3q2 ± q)/2, а знаки при соответствующих мономах равны (–1)q. Исходя из этого наблюдения, Эйлер предположил, что должна быть верна

    Пентагональная теорема:

     ∞

     ∏

     (1 – xk) =

     ∑

     (–1)qx(3q²+q)/2.

    k=1

    q=–∞

    Пентагональная теорема оказалась «крепким орешком» — Эйлер сумел доказать её лишь 14 лет спустя. Эта теорема позволяет сравнительно просто вычислять значения p(n). Вот как это делается.

    Умножим обе части равенства (1) на

     ∞

     ∏

     (1 – xk)

    k=1

    и воспользуемся пентагональной теоремой:

    ( p(0) + p(1) x + p(2) x2 + ...)(1 – x – x2 + x5 + x7 – x12 – x15 + ...) = 1.

    Раскрыв скобки в левой части, получим, что коэффициенты при ненулевых степенях x равны нулю. Отсюда мы получаем замечательную формулу Эйлера, позволяющую последовательно находить числа p(n):


    Рекомендуем скачать другие рефераты по теме: проблема дипломной работы, шпаргалки по русскому.



    Предыдущая страница реферата | 1  2  3  4  5  6  7  8  9  10  11 |




    Поделитесь этой записью или добавьте в закладки

       




    Категории:



    Разделы сайта




    •