Сопряжённые числа
Категория реферата: Рефераты по математике
Теги реферата: шпоры по истории россии, реферат государственный
Добавил(а) на сайт: Устимович.
Предыдущая страница реферата | 4 5 6 7 8 9 10 11 12 13 14 | Следующая страница реферата
|
(1 + √2)n + (1 – √2)n 2 |
, |
|
yn = |
(1 + √2)n – (1 – √2)n 2√2 |
. |
Можно ли в решении этой задачи про целые числа обойтись без иррациональных чисел 1 + √2 и 1 – √2? Теперь, зная ответ, мы можем легко выразить (xn+1; yn+1) через предыдущую пару (xn; yn): из xn+1 + yn+1√2 = (xn + yn√2)(1 + √2) вытекает
xn+1 = xn + 2yn, yn+1 = xn + yn. |
(6) |
До этого рекуррентного соотношения можно было, видимо, догадаться по нескольким первым решениям, а потом проверить, что
| x |
2 n |
– 2y |
2 n |
| = | x |
2 n+1 |
– 2y |
2 n+1 |
| . |
Добавив начальное условие x1 = 1, y1 = 1, отсюда (по индукции) можно было бы заключить, что |xn2 – 2yn2| = 1 для любого n. Далее, выразив обратно (xn; yn): через (xn+1; yn+1), «методом спуска» ([8 ]) можно доказать, что найденной серией исчерпываются все решения уравнения (5) в натуральных числах (x; y). Подобным же образом решается любое «уравнение Пелля» x2 – dy2 = c (а к уравнениям такого типа сводится любое квадратное уравнение в целых числах x, y), но у исходного уравнения может быть несколько серий решений ([7 ]).