Ряды Фурье и их приложения
Категория реферата: Рефераты по математике
Теги реферата: реферат на тему отношения, строительные рефераты
Добавил(а) на сайт: Fevron'ja.
Предыдущая страница реферата | 5 6 7 8 9 10 11 12 13 14 15 | Следующая страница реферата
Аналогично можно доказать, что если ?(x) – нечетная функция, то
[pic]
Если в ряд Фурье разлагается нечетная функция f(x), то произведение f(x) ·coskx есть функция также нечетная, а f(x) · sinkx – четная; следовательно,
[pic] (21)
т. е. ряд Фурье нечетной функции содержит «только синусы».
Если в ряд Фурье разлагается четная функция, то произведение f(x) · sinkx есть функция нечетная, а f(x) · coskx – четная, то:
[pic] (22)
т. е. ряд Фурье четной функции содержит «только косинусы».
Полученные формулы позволяют упрощать вычисления при разыскании коэффициентов Фурье в тех случаях, когда заданная функция является четной или нечетной. Очевидно, что не всякая периодическая функция является четной или нечетной.
6. Ряд Фурье для функции с периодом 2l.
Пусть функция f(x) есть периодическая функция с периодом 2 l, вообще говоря, отличным от 2?. Разложим её в ряд Фурье.
Сделаем замену переменной по формуле
[pic]х = lt / ?.
Тогда функция f(lt / ?) будет периодичной функцией от t с периодом 2?.
Её можно разложить в ряд Фурье на отрезке –? ? x ? ?:
[pic]
где (Пискунов, стр. 341 – дописывать не надо)
[pic]
[pic]
[pic]
Возвратимся к старой переменной x:
[pic] [pic] [pic]
Тогда будем иметь:
[pic] (24)
Формула (23) получит вид
[pic], (25)
Рекомендуем скачать другие рефераты по теме: эффективность диплом, доклад по обж.
Предыдущая страница реферата | 5 6 7 8 9 10 11 12 13 14 15 | Следующая страница реферата